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Thermo-responsive hydrogels are smart materials that rapidly switch between hydrophilic
(swollen) and hydrophobic (shrunken) states when heated past a threshold temperature,
resulting in order-of-magnitude changes in gel volume. Modelling the dynamics of this
switch is notoriously difficult and typically involves fitting a large number of microscopic
material parameters to experimental data. In this paper, we present and validate an
intuitive, macroscopic description of responsive gel dynamics and use it to explore
the shrinking, swelling and pumping of responsive hydrogel displacement pumps for
microfluidic devices. We finish with a discussion on how such tubular structures may be
used to speed up the response times of larger hydrogel smart actuators and unlock new
possibilities for dynamic shape change.
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1. Introduction
Hydrogels are soft porous materials comprising a cross-linked, hydrophilic, polymer
structure surrounded by adsorbed water molecules that are free to move through the
porous scaffold (Doi 2009; Bertrand et al. 2016). Though simple in structure, their elastic
and soft nature, coupled with the ability to change volume to an extreme degree by
swelling or drying, affords them a number of uses in engineering, medical sciences and
agriculture (Zohuriaan-Mehr et al. 2010; Guilherme et al. 2015). In traditional hydrogels,
this swelling and drying occurs passively. In responsive hydrogels, the affinity of the
polymer scaffold for water changes as a result of external stimuli such as heat, light
or chemical concentration (Neumann et al. 2023), allowing for controllable swelling–
shrinking cycles. Such ‘smart’ materials with tunable shape-changing behaviour have
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applications in soft robotics (Lee, Song & Sun 2020), microfluidics (Dong & Jiang 2007)
and in models of biological processes (Vernerey & Shen 2017).

Though responsive gels can react to stimuli of various forms, the most ubiquitous
are thermo-responsive gels, where the affinity of the polymer chains for water drops
rapidly at a critical temperature TC . Above this lower critical solution temperature (LCST),
hydrogen bonds holding the water molecules in place around the polymer chains break
and the release of water molecules is entropically favoured. Perhaps the most widely
studied thermo-responsive gel is poly(N-isopropylacrylamide) (PNIPAM), which has an
LCST that can be tuned to be close to room temperature and finds a number of medical
applications owing to its biocompatibility (Das et al. 2015). The effect of deswelling
is significant, with many such gels exhibiting an order-of-magnitude volume change at
TC , opening up the possibility of a number of macroscopic use cases for responsive gels
(Voudouris et al. 2013).

Modelling the dynamics of this shape change is difficult and is thus often restricted to
simpler geometries such as spheres (Tomari & Doi 1995). The typical modelling approach
seeks the dependence of the Helmholtz free energy of the gel on the ambient temperature,
encoded by the Flory χ parameter, representing the attraction between water molecules
and polymer chains. This parameter typically decreases with increasing temperature (Cai
& Suo 2011), but its value is usually deduced from fitting to experimental data (Afroze,
Nies & Berghmans 2000). Accurately determining the χ parameter is a long-standing
problem in polymer physics, with experimental approaches often difficult, owing to
the number of different physical processes underpinning solvent–polymer and polymer–
polymer interactions, with some more recent work using machine learning approaches
(Nistane et al. 2022) to seek patterns in the variation of χ with polymer structure.
Difficulties are further compounded by the fact that small changes in χ can lead to large
differences in the physics of hydrogels (Afroze et al. 2000).

The Helmholtz free energy is then minimised with respect to deformation, determining
the equilibrium swelling state at a fixed temperature. However, describing the transient
evolution of the state of the hydrogel as the temperature is varied is significantly more
difficult, and requires the separate consideration of chemical potentials, polymer network
elasticity and induced interstitial flows through the gel.

In classic large-strain poroelastic models (Bertrand et al. 2016), the principal stresses (in
the directions of the principal stretches) are deduced from the energy. These stresses are
then balanced with gradients in chemical potential to describe the poroelastic flow and thus
the gel dynamics. Whilst effective, these models rely on a characterisation of the material
in terms of a large number of microscopic parameters, are computationally expensive, and
result in a series of coupled partial differential equations for porosity, chemical potential
and stresses, which potentially masks some of the key macro-scale physics driving the
responsive dynamics and offers limited potential for analytical solutions.

It is also possible to model the behaviour of deformable soft porous media using the
theory of linear poroelasticity, characterising the gel by its elastic moduli and describing
the flow through the scaffold using Darcy’s law (Doi 2009). These models are inherently
macroscopic and offer the benefit of analytic tractability. However, they cannot cope
with nonlinearities that arise from large swelling strains and are therefore unsuitable for
modelling super-absorbent gels, where the volumetric changes involved in swelling and
drying may be of the order of 10–100 times (Bertrand et al. 2016).

In this work, we therefore seek a model based only on macroscopically measurable
material properties that can also incorporate large swelling strains and give faster
predictions to describe the transient swelling–deswelling states in response to temperature
changes. Such a model would be valuable, as it could provide rapid quantitative design
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input to experimentalists working on applications of responsive gels such as small
microfluidic devices (Harmon, Tang & Frank 2003) and robotic actuators (Lee et al. 2020).

A macroscopic continuum-mechanical model for passive gels was recently provided by
Webber & Worster (2023) and Webber, Etzold & Worster (2023). The model allows for
nonlinearities in the isotropic strain, whilst linearising around small deviatoric strains.
This assumption is equivalent to the statement that, at any swelling state, the hydrogel
material acts as a linear-elastic bulk solid and it reduces the gel dynamics to a nonlinear
advection–diffusion equation for the local polymer (volume) fraction φ. In this paper, we
extend this model to incorporate thermo-responsive effects, by assuming that the osmotic
pressure (and potentially other material parameters) can depend also on temperature. This
dependency leads to different swelling behaviour as the temperature is varied and different
equilibrium states either side of the LCST.

Our model makes the analysis of complicated responsive actuators more tractable, and
provides good qualitative and quantitative predictions of the key physics at play. It is
broadly applicable to a range of hydrogel actuators in microfluidic devices, such as valves
(Dong & Jiang 2007), passive pumps (drawing in water through their swelling behaviour)
(Seo et al. 2019) and the displacement pumps (Richter et al. 2009) that we will consider
herein.

In this paper, we analyse the contraction of a hollow tube formed of thermo-responsive
hydrogel when a heat pulse is applied, and, using the thermo-responsive linear-elastic-
nonlinear-swelling model derived in § 2, we deduce both the shrunken geometry and the
transition from swollen to shrunken states by the flow of water through the hydrogel walls
and the hollow lumen of the ‘pipe’.

Notably, we show that the presence of a fluid-filled pore in the centre of a tube enables
much faster responses to changes in temperature than in a pure gel, since the flow that
results from deswelling is not restricted by viscous resistance through the pore matrix.
Our model also gives expressions for the pumping rate and characteristics of the induced
peristaltic fluid flow in response to propagating heat pulses.

Finally, we note that, in addition to applications driving fluid flow in microfluidic
devices, a number of existing applications depend on the ability to tune response times
to external stimuli (Maslen et al. 2023). In such constructions, anisotropic shape changes
result from isotropic deswelling that occurs at different rates – so-called ‘dynamic
anisotropy’ – in response to a heat pulse. This behaviour is key to unlocking non-reciprocal
shrinking–swelling dynamics, critical for achieving work in the inertialess fluid regime.
The existence of a simplified, analytic, understanding of thermo-responsive gels allows
us to tune the thickness of the pipe walls to give a desirable response time, affording us
predictions for the construction of responsive hydrogel devices with controllable response
rates to external stimuli, irrespective of the intrinsic material response rate. We begin
with the derivation of the governing equations that would underpin the responses of such
devices.

2. Thermo-responsive linear-elastic-nonlinear-swelling model
The linear-elastic-nonlinear-swelling (LENS) model, introduced by Webber & Worster
(2023) and Webber et al. (2023), is a poromechanical continuum model for the behaviour
of large-swelling gels. The model is derived based upon the assumption that isotropic
strains, corresponding to the swelling and drying of a gel, may be large, but deviatoric
strains must be small. This model achieves both the accurate description of large
deformation seen in nonlinear energy-based models and the analytic tractability of linear
poroelasticity. Figure 1 shows how a general deformation from a reference state can be
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Reference state Stress decomposition

Isotropic Deviatoric

(a) (b)

Figure 1. (a) Reference state where φ ≡ φ0 and the cross-linked polymers are in thermodynamic equilibrium
with the surroundings. (b) Schematic decomposition of any deformation (dashed lines) from this reference state
(dotted lines) into an isotropic part due to drying (in this case) and a small deviatoric part.

decomposed into these two parts and illustrates how we can view isotropic shrinkage
or growth as drying or swelling, respectively, changing the local polymer volume
fraction φ. In this model, at any given degree of swelling, a hydrogel is characterised
using three swelling-dependent material parameters; a generalised osmotic pressure Π(φ)

representing the gel’s affinity for water, a shear modulus μs(φ) representing the resistance
to elastic deformation and a permeability k(φ) representing the ease with which water can
percolate through the gel scaffold.

In addition to the comparative simplicity of such an approach, these three parameters
correspond to clear physical processes, as opposed to microscopic forces on the scale of
the polymer chains, or thermodynamic constants that can be difficult to relate to larger-
scale swelling or drying phenomena. For example, when applying a force to a gel, the
initial, incompressible, response is mediated by the shear modulus μs , the final steady
state as water is driven in or imbibed is set by the generalised osmotic pressure Π , and the
time scale over which this occurs is set by the permeability k. These parameters can be
determined for any hydrogel without an understanding of the micro-scale structure or the
thermal physics governing the osmotic and elastic behaviour of these materials.

This is of particular use when considering thermo-responsive gels, where a large
number of parameters such as the cross-linker density and interaction parameters must
be estimated from reference values or curve fitting (Hirotsu, Hirokawa & Tanaka 1987).
Perhaps the clearest illustration of the distinction between our macroscopic model and
models based on micro-scale physics is our generalised osmotic pressure Π . This differs
from the osmotic pressures in the hydrogel literature by also incorporating isotropic elastic
stresses on gel elements, as well as the affinity of polymer chains for water (Webber
2024). Phenomenologically, the two effects are indistinguishable, and lead to expulsion
or imbibition of water, even though their physical basis is vastly different (Peppin, Elliott
& Worster 2005), and we will henceforth refer to our parameter Π simply as the osmotic
pressure for this reason.

Thermo-responsive hydrogels respond to changes in temperature through rapidly losing
their affinity for water when the LCST is exceeded. Macroscopically, this manifests itself
as the expulsion of water from the pore spaces and the drying out of the remaining polymer
scaffold as a result. This corresponds to a raising of the equilibrium polymer fraction (the
polymer fraction attained by a gel placed in water with no external constraints) φ0 as a
result of the change in temperature, and we incorporate this effect into a LENS model by
introducing a temperature-dependent equilibrium polymer fraction φ0(T ). By definition,
the osmotic pressure is zero when φ = φ0, and so to accommodate thermo-responsivity
into our model, we must allow the osmotic pressure to depend on T , with

Π = Π(φ, T ) and Π(φ0(T ), T ) = 0. (2.1)
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Figure 2. Plots of a representative osmotic pressure function at a temperature T1 below the lower critical
solution temperature TC and T2 above this threshold, showing how the equilibrium polymer fraction increases
sharply as the temperature is raised. A sample trajectory as the temperature is raised from T1 to T2 is plotted.

In figure 2, we illustrate two potential forms of the osmotic pressure below and above the
critical temperature TC , and show the mechanism for transition between the equilibrium
swelling states φ0(T1) and φ0(T2) as the temperature is raised and a hydrogel deswells.

In experiments, it is observed that the equilibrium polymer fraction rises rapidly
as the threshold T = TC is crossed, with little variation in φ0(T ) either side of this
critical temperature (Butler & Montenegro-Johnson 2022). This motivates the choice of a
piecewise constant equilibrium polymer fraction

φ0(T ) =
{

φ00, T � TC ,

φ0∞, T > TC ,
(2.2)

where φ0∞, the ‘deswollen’ equilibrium polymer fraction, is greater than that in the
‘swollen’ state, φ00. The simplest continuous osmotic pressure functions that capture
positivity above the equilibrium and negativity below it are defined by

Π(φ, T ) =
{

Π00
φ−φ00

φ00
, T � TC ,

Π0∞ φ−φ0∞
φ0∞ , T > TC ,

(2.3)

akin to the linearised osmotic pressures used by Webber & Worster (2023), with the
parameters Π00 and Π0∞ representing the strength of the osmotic pressures when the
polymer fraction is perturbed from its equilibrium value. In the present study, we use
the expressions of (2.2) and (2.3) for their analytic simplicity and their ability to capture the
macroscopic deswelling behaviour as the LCST is crossed, but in principle, any expression
for the osmotic pressure can be substituted into the LENS model. Indeed, in Appendix A,
we illustrate how LENS parameters can be deduced from a standard model for thermo-
responsive gels, employing a neo-Hookean elastic model for the polymer chains and
Flory–Huggins theory for the mixing of water and polymer molecules (Cai & Suo 2011).

To model the stresses and strains on a hydrogel element, we measure the displacement ξ
from a fixed reference state. Webber & Worster (2023) chose this to be the ‘fully swollen’
equilibrium state φ ≡ φ0, but we must pick a temperature-independent reference when gels
are thermo-responsive. We choose some reference temperature T0 < TC where φ0 = φ00
and consider this the fully swollen reference state relative to which all displacements are
measured. Therefore, the Cauchy strain is equal to

e =
[

1 −
(

φ

φ00

)1/3
]

I + ε, (2.4)
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with ε the traceless deviatoric strain, assumed small in LENS modelling. This shows that
the divergence of the displacement field satisfies

∇ · ξ = 3

[
1 −

(
φ

φ00

)1/3
]

. (2.5)

The stresses on an element of gel are given by the Cauchy stress tensor

σ = − [
p + Π(φ, T )

]
I + 2μs(φ)ε, (2.6)

where p is the pervadic, or Darcy, pressure (the fluid pressure as would be measured by
a transducer separated from the gel by a partially permeable membrane that only allows
water to pass (Peppin et al. 2005)). Gradients in pervadic pressure p drive interstitial fluid
flows relative to the polymer scaffold, giving a net volume flux u of water via Darcy’s
law,

u = −k(φ)

μl
∇ p, (2.7)

where k(φ) is the polymer fraction-dependent permeability, which we assume to be equal
to a constant k for simplicity. Note that this Darcy velocity is not equal to the water
velocity uw – instead, it is equal to the flux of water relative to a polymer scaffold that
deforms with velocity u p, so u = (1 − φ)(uw − u p). An expression for the polymer
velocity u p is derived by Webber et al. (2023),

u p =
(

φ

φ00

)−1/3
∂ξ

∂t
, (2.8)

representing the reconfiguration of the polymer scaffold as a gel deforms in terms
of the displacement field. It can also be shown that the phase-averaged flux q =
φu p + (1 − φ)uw = u + u p is solenoidal, through conservation of water and polymer.

As shown in the stress tensor of (2.6), deviatoric elastic strains are related to stresses
via the shear modulus μs(φ), which we henceforth take as a constant μs , independent
of polymer fraction. This both leads to a more analytically tractable model, but is also
predicted by fully nonlinear energy-based models, such as those based on neo-Hookean
polymer chain elasticity, as outlined in Appendix A.

Combining the separate expressions for polymer and water conservation with Cauchy’s
momentum equation, gel dynamics is governed by the polymer fraction evolution
equation

∂φ

∂t
+ q · ∇φ = ∇ · [D(φ)∇φ] with D(φ) = k

μl

[
φ

∂Π

∂φ
+ 4μs

3

(
φ

φ0

)1/3
]

. (2.9)

The same derivation, presented for example by Webber & Worster (2023) and Webber
(2024), shows that the fluid flux (2.7) can be written as [D(φ)/φ]∇φ, such that water
flows from areas with low φ towards drier regions with high φ. Equation (2.9) can then be
coupled with boundary conditions on this flow field and on the stress (2.6) to solve for the
evolution of composition in time. Techniques outlined by Webber et al. (2023) allow for
the shape of the gel to be deduced from its composition, solving a biharmonic equation
for the displacement field ξ , but for the simple geometries considered in this paper, (2.5)
alongside symmetry assumptions will suffice.
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2.1. Comparing thermo-responsive LENS with a fully nonlinear model
To show that the predictions of LENS modelling compare well with those of commonly
used nonlinear modelling of thermo-responsive hydrogels, we consider the swelling and
drying of a poly(N-isopropylacrylamide) (PNIPAM) sphere when heated or cooled around
its critical temperature TC . This problem has been treated extensively in the literature
owing to its geometric simplicity and tractability (Matsuo & Tanaka 1988; Tomari &
Doi 1995; Butler & Montenegro-Johnson 2022). Since no constitutive laws for material
parameters are specified in LENS, we can deduce functional forms for Π(φ), μs(φ) and
k(φ) given any model of our choice, including the fully nonlinear models used by other
authors.

Starting from the most common approach of choosing a Gaussian-chain nonlinear
elastic model for the polymer scaffold coupled with Flory–Huggins theory for interaction
between polymer and water molecules (Cai & Suo 2011), we derive the form of Π(φ) in
Appendix A,

Π(φ) = kB T

Ω f

[
Ω−1

(
φ − φ1/3

)
− φ − ln(1 − φ) − φ2χ + φ2(1 − φ)

∂χ

∂φ

]
, (2.10)

where kB is the Boltzmann constant, Ω f is the volume occupied by a single water
molecule, Ω is the volume of polymer molecules relative to water molecules and χ

is the Flory interaction parameter, quantifying the affinity of polymer chains for water
molecules. This osmotic pressure function permits us to deduce the equilibrium polymer
fraction as a function of temperature, with a sharp change at the critical temperature TC .
A similar approach gives the shear modulus μs , which is found to be independent of
polymer fraction. Then, we fit the measured parameters of Hirotsu et al. (1987) to find
the osmotic modulus, shear modulus and permeability for such gels in our formalism,
as detailed fully in Appendix A and the supplementary material. This parameter set was
chosen to avoid the complicated hysteresis behaviour seen in other such fitting parameters
(for example, those measured by Afroze et al. 2000), which can be modelled using our
approach but we do not discuss here. A more detailed discussion of differences between
swelling and drying, and spinodal decomposition between different sets of parameters can
be found from Butler & Montenegro-Johnson (2022). Further details of the governing
equations in both cases, and the precise forms of the non-dimensional times and lengths
tB M J and rB M J can be found in the supplementary material.

We first compute the swelling behaviour of a gel that is initially in equilibrium at T =
308 K before the temperature is rapidly decreased to 304 K. This leads to swelling from an
initial polymer fraction of φ0 ≈ 0.64 to a much lower value φ0 ≈ 0.05. Figure 3 shows good
quantitative and qualitative agreement with the results of Butler & Montenegro-Johnson
(2022), with marginally slower growth of the radius but the same diffusive transport of
water from surroundings into the bulk of the gel. Repeating the same analysis for smooth
drying (where there is no formation of a drying front), we raise the temperature from 304 K
to 307.6 K, with figure 4 showing the good qualitative, but weaker quantitative, agreement
in this case. Our model does, however, capture the rapid initial and later-time drying, with
a plateau of slower drying present when 2 � tB M J � 5.

There is a more significant discrepancy in the predictions of LENS and the fully-
nonlinear model in this case due to the significant polymer fraction gradients present close
to tB M J = 5. In Butler & Montenegro-Johnson (2022), the criteria for gel deswelling with
phase separation are deduced, and in this smooth deswelling problem, we pass close to
a region of parameter space where phase separation can occur. The presence of a nearby
equilibrium solution gives a critical slow-down behaviour akin to that discussed by Gomez,
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Figure 3. Plots illustrating the swelling of a hydrogel bead after the temperature is lowered from 308 K to
304 K. The parameters used are the same as those used by Butler & Montenegro-Johnson (2022), with the fully
nonlinear results plotted for comparison, and tB M J is the non-dimensional time used by Butler & Montenegro-
Johnson (2022). (a) Evolving polymer fraction with the growth of the radius in the fully nonlinear model shown
as a red curve. (b) Porosity profiles at tB M J = 0.0001, 0.0002, 0.0005, 0.001, 0.0025, 0.01, 0.05, 0.1, 0.2, 0.5
and 1, with darker blue representing later times. Results from the fully nonlinear model are shown as dashed
lines.
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Figure 4. Plots illustrating the drying of a hydrogel bead after the temperature is raised from 304 K to 307.6 K,
with the same parameters as before and the fully nonlinear solution plotted for comparison. (a) Evolving
porosity with the shrinkage of the radius in the fully nonlinear model shown as a red curve. (b) Porosity
profiles are shown at tB M J = 0, 1, 2, 3, 4, 5, 6, 7 and 8, with darker blue representing later times. Results from
the fully nonlinear model are shown as dashed lines.

Moulton & Vella (2017), manifesting itself as the plateau of slow drying at intermediate
times.

2.1.1. Phase separation and negative diffusivities
Often during the deswelling process a sharp drying front forms, travelling radially
inwards through the bead, with the exterior rapidly drying to its final state and the
interior remaining relatively swollen until the front reaches the centre. This occurs when
trajectories in (T, φ)-space pass through the spinodal or coexistence regions. In the
spinodal region, spontaneous phase separation can occur, with the formation of regions
of dried polymer surrounded by swollen gel or vice versa as the system equilibrates. The
coexistence region is a special case of this, where a dried gel and a swollen one can coexist
in thermodynamic equilibrium with a simple sharp boundary (such as a drying front)
separating the two. In the present study, we consider both of these effects to be forms
of spinodal decomposition, with coexistence a weaker ‘local’ form. In either case, there
are sharp differences in φ across very short distances, as seen especially in cases where
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Figure 5. A plot of the region in (T, φ)-space where the polymer diffusivity is negative (spinodal region),
alongside the equilibrium polymer fraction φ0(T ), using the gel parameters of Hirotsu et al. (1987), the smooth
swelling problem of figure 3 is plotted in blue, with the temperature lowered and the spinodal region never
approached, and the smooth drying of figure 4 is plotted in yellow. Phase separation occurs, for example, when
the temperature is raised to 308 K and the path to equilibrium passes through the spinodal region, as shown in
the example green trajectory.

there is significant hysteretic behaviour in the equilibrium curve (for example, in the gel
parameters measured by Afroze et al. 2000).

Since large gradients in polymer fraction lead to large deviatoric strains, we expect that
our model is unlikely to capture the dynamics of these sharp fronts exactly, since it is
dependent on the assumption that these strains remain small. Attempting to replicate this
behaviour regardless, through raising the temperature from 304 K to 308 K, shows that the
polymer diffusivity is, in fact, negative for this case in our model. This leads to spinodal
decomposition, with D(φ) < 0 the criterion for such behaviour to occur. Figure 5 shows
the trajectory of swelling and drying problems in (T, φ)-space for one particular choice
of parameters, making it clear why swelling (when the temperature is lowered) never leads
to negative diffusivities and why some drying can occur (such as that of figure 4) without
entering the spinodal region. In the remainder of this paper, we will consider cases of
smooth drying where phase separation does not occur: indeed, taking the linear form of Π

in (2.3) enforces this.

3. Response times and flow in thermo-responsive tubes
The transport equation (2.9) illustrates how the time for a gel to respond to a change in
the local temperature is set by the poroelastic time scale tpore for the gel, found by scaling
terms in the equation to be given by

tpore ∼ μl L2

kΠ0∞
, (3.1)

where L is a length scale for the problem. For example, in the plots of figure 3 where
L ∼ a0, we see that a swelling sphere only attains its final radius at a time O(μla2

0/kΠ0∞)

after the temperature has been changed. In general, these time scales are slow, of the order
of many hours for most macroscopic gels of interest (Webber & Worster 2023), since the
response is rate-limited by the permeability k, typically of the order 10−15 m2 or smaller
(Etzold, Linden & Worster 2021).

If the physical situation we are modelling has a fixed size L , we seek an approach to
lower the poroelastic time scale so that the gel reacts more quickly. Recently, a new class of
microfluidic actuators have been designed, reliant on simple geometric designs to convert
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the isotropic shrinkage of hydrogels above the LCST threshold into more complicated
anisotropic morphological changes (Maslen et al. 2023). Even at the micrometre scale,
these devices take a number of seconds to pass through a single actuation cycle, and
with deswelling times scaling like L2, centimetre- or millimetre-scale devices harnessing
the same physics can be expected to take many hours to achieve the same shape
changes. This currently confines such applications to microfluidics, whilst an approach
that lowers the response times could find applications in actuators or soft robotics on the
macroscopic scale. Recent technical developments have centred on engineered structures
with interconnected microchannels that respond much faster to changes in temperature,
but detailed modelling of these effects has not been carried out (Spratte et al. 2022).

Concurrently, a number of recent advances in microfluidics have harnessed the ability of
hydrogels to pump fluid, either passively through their hydrophilic nature (Dong & Jiang
2007) or through the use of responsive hydrogels to drive peristaltic flows (Richter et al.
2009). In this latter case, fluid flows many orders of magnitude faster than the percolating
flow through the gel matrix can be achieved by squeezing water through microscale voids
in the structure. In this section, we consider the simplest such pumping device, a hollow
tube of thermo-responsive hydrogel filled with and surrounded by water, and how the
tube responds to an increase in temperature above the LCST. This provides a foundation
for understanding more complicated physical situations – for example, understanding the
behaviour of such a tube enables the modelling of a single microchannel in microporous
gels, allowing for quantitative modelling of response times when such gels are heated.

3.1. Model problem
We consider an infinite tube, symmetric around z = 0, formed from thermo-responsive
gel, occupying the region a0 < r < a1. The lumen of this tube is filled with water and it is
surrounded by water. Initially, the gel is in a swollen state with uniform polymer fraction
φ ≡ φ00 and the temperature is constant everywhere, equal to TC − �T , below the critical
threshold for deswelling. When the temperature is brought above the critical value, the gel
will deswell, leading to a shrinkage of the tube and the expulsion of water. This water can
be expelled radially out of the tube, carried (slowly) through the gel parallel to the axis, or
can be transported axially in the lumen of the tube. Though the deswelling response to the
temperature change is still governed by the poroelastic time scale, the tube can be manu-
factured to be sufficiently thin that shrinkage is rapid and bulk water can be transported
much more rapidly through the hollow lumen than would otherwise be the case for a solid
cylinder (as in the case investigated by Webber et al. (2023)), so that the gel device acts
like a small-scale displacement pump, reacting on a much faster time scale than tpore.

The deswelling of tubes formed from hydrogels has been studied in the past, specifically
in the context of water-filled tubes exposed to the air, losing water through their walls as
they dry out (Curatolo et al. 2023). Qualitatively, many of the same phenomena as seen in
our model situation are seen here: water is driven radially from a fluid-filled pore, through
the thin walls of the tube and then out into the surroundings as the gel deswells. However,
notably, our gels are surrounded by water and not air, so the tube is unstressed, since we
are effectively imposing zero external chemical potential on the outside of the tube by
taking p = 0 here. This implies that we do not expect to see the strong suction effects seen
in air drying, where negative inner pressures arise, which have been shown to lead to a
circumferential buckling instability (Curatolo, Nardinocchi & Teresi 2018). In our case,
we can therefore assume that the shape of the tube will remain axisymmetric for all time.

To illustrate the response of the tube to a temperature field that varies in space and time,
we impose a temperature TC + �T at z = 0 for all times t � 0. As this heat pulse spreads
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a0

a1b1(z, t)

b0(z, t)

T = TC + �T

T → TC – �Tz = 0

Figure 6. An illustration of a section of the hydrogel tube in z � 0, occupying the region b0 < r < b1 with a
hollow lumen inside. The heat pulse that starts at z = 0 has spread out here leading to a collapse of the tube,
which is fully swollen as z → ∞. At temperatures below the LCST, the tube occupies its original position
a0 < r < a1.

out z → ±∞ in space, there is a collapse of the tube in regions with T > TC , and water is
driven out into the surroundings and towards the still-swollen sections of tube. The radius
of the inner lumen is described by r = b0(z, t) whilst the outer radius is r = b1(z, t),
such that the collapsed tube occupies the region b0 < r < b1 and bi (z, 0) = ai (i = 0, 1).
Figure 6 illustrates a section of tube some time after the heat pulse has spread out from
z = 0, showing collapse behind the heat pulse front. Symmetry arguments imply that we
can restrict our attention to z � 0 in most cases, with b0, b1, T and φ all even functions of z.

3.2. Deformation of the tube
In line with LENS modelling, we assume that all deformation is locally isotropic, and that
deswelling leads to a displacement field (relative to the initial state) with axial component
η and radial component ξ given by

ξ

r
≈ ∂ξ

∂r
≈ ∂η

∂z
≈ 1 −

(
φ

φ00

)1/3

. (3.2)

Making this assumption requires the polymer fraction field to be independent of r at
leading order, an assumption that is reasonable to make in the slender limit of a tube
with much larger horizontal length scale than diameter. Since η = 0 at z = 0, owing to
symmetry around this point, the leading-order displacement field is

ξ =
[

1 −
(

φ

φ00

)1/3
]

r and η =
∫ z

0

[
1 −

(
φ

φ00

)1/3
]

du. (3.3)

Using this expression for ξ allows us to write

b0

a0
≈ b1

a1
≈
(

φ

φ00

)−1/3

, (3.4)

and so the local thickness of the tube is proportional to φ−1/3.

3.3. Response to changes in temperature
To derive the response of the tube to changes in temperature, it is necessary to solve
for the evolution of the gel composition φ(r, z, t). Initially, φ ≡ φ00 everywhere and the
geometry of the problem shows that
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∂φ

∂z

∣∣∣∣
z=0

= 0 and
∂φ

∂z

∣∣∣∣
z→±∞

= 0, (3.5)

arising from the symmetry of the tube and heat pulse around z = 0 and the assumption
that there is no axial flow through the tube itself (proportional to ∂φ/∂z through (2.7)) as
z → ±∞. Indeed, we can simplify the problem further using the symmetry around z = 0,
and instead solve for the composition in z � 0 alone, reflecting our solution to extend to
negative z values.

There has recently been much discussion on the boundary conditions to be applied at
the interface of a gel with its surroundings (Xu et al. 2022, 2024). Significantly, it has been
shown that the nature of the tangential stress and velocity boundary conditions can have
a significant effect on the dynamics of flows within and without a hydrogel. In addition,
there are potential frictional effects as fluid flows cross the water–gel boundary. When
flows are significant and the external fluid cannot be assumed quiescent, it is important to
choose boundary conditions with care, but in the present study, the poroelastic time scale
is sufficiently long that viscous stresses are negligible (Webber & Worster 2023) and the
dominant flows are radial, with only small tangential components, so the external fluid
is treated as a quiescent bath (even though there are flows, for example, along the axis
through the lumen).

At the surface r = b1(z, t), we assume that there is no radial stress exerted by the tube
on its surroundings (and vice versa), so σrr = 0. Further assuming that large-scale flows in
the water bath surrounding the tube are small, we take the fluid pressure to be a constant
p ≡ 0 outside of the tube. Continuity of pervadic pressure then implies that p = 0 on
r = b1, and this combines with the condition on σrr to give

Π(φ)|r=b1 = 2μsεrr = 0 so φ(b1(z), z, t) = φ0, (3.6)

since the deviatoric strain is zero by our assumption of local isotropy.
On the inside of the tube, we cannot a priori make the assumption of uniform zero

pervadic pressure since viscous stresses arising from the lumen flows should be balanced
by gradients in p. As discussed in Appendix B, there is an order-(a1/L)2 correction to
the interior pressure field, leading to a mixed boundary condition with a contribution from
∂φ2/∂ R. However, the viscous stresses are much larger on the interior of the gel than on
the exterior, owing to the low permeability, and it can be shown, using (B7), that the lumen
pressure field has little effect on the gel dynamics. Thence, we can use the same boundary
condition on the interior of the gel tube as on the exterior, taking

φ(b0(z, t), z, t) = φ0. (3.7)

To describe the evolution of polymer fraction in time as the gel expels water, (2.9)
becomes

∂φ

∂t
+ q · ∇φ = 1

r

∂

∂r

[
r D(φ, T )

∂φ

∂r

]
+ ∂

∂z

[
D(φ, T )

∂φ

∂z

]
with

D(φ, T ) = k

μl

[
Π0(T )φ

φ0(T )
+ 4μs

3

(
φ

φ00

)1/3
]

. (3.8)

There is no intrinsic axial length scale arising from the geometry of this problem, since
the tube is infinite in length, but we introduce a length scale L representing the character-
istic distance over which temperature variations occur. To simplify the analysis, we make
a slenderness assumption that the characteristic axial length scale L is much greater than
the characteristic radial length scale a1. Define ε = a1/L and assume that the polymer
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fraction field only has leading-order axial variation, with radial differences in polymer
fraction being of the order δ � 1 (arising from our assumption of local isotropy),

φ = φ1(z, t) + δφ2(r, z, t), (3.9)

where we have made the arbitrary choice that φ2 is zero on the midline
r = [b0(z, t) + b1(z, t)]/2, with φ1 being the polymer fraction on the middle of
the tube. Substituting this form of φ into the evolution equation (3.8) and separating
variables, we deduce that δ = ε2. Therefore, we need only make a relatively weak
slenderness assumption, since only ε2 need be small.

The material flux q = qr r̂ + qz ẑ is solenoidal and thus qr/a1 ∼ qz/L , so qr ∼ εqz .
Therefore,

qr
∂φ

∂r
= ε2qr

∂φ2

∂r
∼ ε3

a1
qz and qz

∂φ

∂z
∼ ε

a1
qz, (3.10)

allowing us to neglect radial advection using this slenderness assumption. Introducing the
non-dimensional variables R = r/a1 and Z = z/L , the same non-dimensional scalings can
be made to the radii b0 and b1, so

B0 = b0

a1
= �

(
φ1

φ00

)−1/3

and B1 = b1

a1
=
(

φ1

φ00

)−1/3

, (3.11)

where � = a0/a1 < 1. The leading-order balance of (3.8) is thus

L2 ∂φ1

∂t
+ Lqz

∂φ1

∂ Z
= 1

R

[
RD(φ1, T )

∂φ2

∂ R

]
+ ∂

∂ Z

[
D(φ1, T )

∂φ1

∂ Z

]
. (3.12)

We now separate variables for φ2, since the only term that depends on R is the first
diffusive term on the right-hand side. Hence,

φ2(R, Z , t) = f (Z , T, t)

4D(φ1, T )
R2 + g(Z , T, t)lnR + h(Z , T, t). (3.13)

By definition, φ2 = 0 on the midline of the tube R = (B0 + B1)/2 and φ2 = [φ0(T ) −
φ1]/ε2 on R = B0 and R = B1 from boundary conditions (3.6) and (3.7), so φ2 is
symmetric around the midline, with

φ2(R, Z , t) = 4[φ0(T ) − φ1]
ε2(1 − �)2

(
φ1

φ00

)2/3
[

R − 1 + �

2

(
φ1

φ00

)−1/3
]2

with

f = 16D(φ1, T )[φ0(T ) − φ1]
ε2(1 − �)2

(
φ1

φ00

)2/3

. (3.14)

This allows us to deduce the radial structure of the polymer fraction given the value
of φ1, the polymer fraction on the inside of the tube. This is found by solving the evolution
equation (3.12), which is now fully determined up to the total axial flux. Using the
approach outlined by Webber et al. (2023),

Lqz = D(φ1, T )

φ1

∂φ1

∂ Z
+ L

(
φ1

φ00

)−1/3
∂η

∂t

= D(φ1, T )

φ1

∂φ1

∂ Z
− L2

3

(
φ1

φ00

)−1/3 ∫ Z

0

(
φ1

φ00

)−2/3
∂φ1

∂t
du. (3.15)
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This, alongside the form of φ2 from (3.14), can then be substituted into (3.12), which we
non-dimensionalise by introducing the variables

τ = kΠ00t

μl L2 , Φ0, 1, 2, ∞ = φ0, 1, 2, 0∞
φ00

, M= μs

Π00
, D(Φ1, T ) = μl

kΠ00
D(φ1, T ).

(3.16)
Then,

∂Φ1

∂τ
+ D

Φ1

(
∂Φ1

∂ Z

)2

− Φ
−1/3
1
3

∂Φ1

∂ Z

∫ Z

0
Φ

−2/3
1

∂Φ1

∂τ
du =F + ∂

∂ Z

[
D ∂Φ1

∂ Z

]
with

D = Π0(T )

Π00

Φ1

Φ0(T )
+ 4M

3
Φ

1/3
1 and F = 16Φ

2/3
1 D[Φ0(T ) − Φ1]

ε2(1 − �)2 . (3.17)

This is to be solved subject to the initial condition Φ1 ≡ 1, and subject to boundary
conditions ∂Φ1/∂ Z = 0 at both Z = 0 and as Z → ∞. In the present study, a finite-
difference scheme akin to that summarised in the supplementary material of Webber et al.
(2023) is used to solve (3.17). From this solution, (3.14) gives the radial polymer fraction
structure and the shape of the tube is given by

�Φ
−1/3
1 � R �Φ

−1/3
1 , (3.18)

at leading order in the small parameter ε2. The form of the function F implies that, for our
model to be consistent, Φ1 must everywhere be close to the piecewise-constant equilibrium
polymer fraction Φ0, or else our scaling arguments for the terms in the advection–diffusion
equation will be invalid. We can check this assumption after calculating the solution to
verify the validity of our modelling.

3.4. Response to uniform temperature change
Before studying the response of a hollow tube to a propagating heat pulse, we first consider
the case where the temperature is everywhere brought up from below the LCST to TC +
�T at t = 0. The response of the tube is axially uniform, evolving following a simplified
form of (3.17),

∂Φ1

∂τ
= 16(Φ∞ − Φ1)

ε2(1 − �)2

(
Π̃

Φ
5/3
1

Φ∞
+ 4M

3
Φ1

)
, (3.19)

where Π̃ = Π0∞/Π00. We can use this equation to understand how the material
parameters Φ∞, M and Π̃ affect the response time to a change in temperature without the
added complication of spatial variations. We know that the polymer fraction on the interior
of the tube wall will approach Φ∞ as time goes on, with the outside polymer fraction
instantaneously reaching this value, but the rate at which this steady state is approached
may vary. To measure the rate of deswelling, define the deswelling time scale τ99 as the
time taken for

Φ1 �Φ∗ − Φ∗ − 1
100

. (3.20)

Straightforwardly, it is clear that deswelling is more rapid when there is a greater contrast
between φ00 and φ0∞, since the bracketed term Φ∞ − Φ1 is greater in magnitude. Thus,
gels with more dramatic deswelling will approach their steady states faster. Figure 7(a)
shows how the time taken to reach Φ∞ depends on the stiffness of the gel (encoded
by M) and the relative strength of the osmotic pressure at higher temperatures (encoded
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Deswelling time scales when

ℓ = 0.5
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(a) (b) Polymer fraction with

M = Π = 1 ˜

Φ1Π

τ

Figure 7. Plots of the one-dimensional deswelling of a tube when the temperature is uniformly changed when
Φ∞ = 2 and ε = 0.1. This shows the variation of the deswelling time scale τ99 (the time taken for Φ1 � 1.99)
and the approach to steady state for a number of tube thicknesses.

by Π̃ ). Stiffer gels resist the formation of deviatoric strains, which arise from differences
in polymer fraction, so the interior must deswell to catch up with the outside of the tube,
leading to a much faster deswelling process as M increases. Similarly, larger values of Π̃

lead to more rapid interstitial flows driven by pervadic pressure gradients, and so the time
to deswell decreases as Π̃ increases.

Figure 7(b) illustrates the approach of the polymer fraction on the interior of the tube
wall, Φ1, to the equilibrium value Φ∞, showing how the approach is more rapid for thinner
tubes where there is a shorter distance for water to diffuse out.

3.5. Heat transfer in the system
If, instead of a uniform temperature field, we impose a fixed temperature T = TC + �T
at Z = 0, we expect this heat pulse to spread out in the axial direction, symmetrically
around the origin, with a deswelling front behind of which T > TC and in front of which
T < TC . Modelling the transport of heat through the water, gel scaffold and within the pore
space water is a potentially complicated task, and a number of different transport processes
must be accounted for, as well as the energetic contributions of swelling, deswelling
and deformation (Kaviany 1995). In the present study, we will consider the simplest
possible case, acknowledging that more complicated phenomena such as dispersion will
also contribute to heat transfer, but can be reasonably neglected on the assumption that
flows through the gel are sufficiently slow.

There is much discussion in the literature of thermoelasticity with specific applications
to hydrogels (Cai & Suo 2011; Drozdov 2014; Brunner, Seidlhofer & Ulz 2024) and
here we take a necessarily simpler model, justifying why deformation and swelling do
not contribute to temperature evolution at leading order. In Appendix C, we derive a
temperature evolution equation for a gel in the LENS formalism in the absence of external
heat supply (R = 0),

∂T

∂t
+ q · ∇T = κ∇2T + k(φ)

ρcμl
|∇ p|2 + 1

φ

(
Π(φ)

ρc
+ T

)(
∂φ

∂t
+ q · ∇φ

)
, (3.21)

where c is the specific heat capacity, ρ is the gel density and κ is a spatially averaged
thermal diffusivity. In the water surrounding the hydrogel, heat transfer is described by
the advection–diffusion equation
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∂T

∂t
+ u · ∇T = ∇ · (κw∇T ) = κw∇2T, (3.22)

where κw is the thermal diffusivity of water, assumed to be spatially uniform. In our model,
we assume that κ ≈ κw. Certainly, this is true in regions where φ � 1 and the gel remains
swollen, since the contributions of diffusivity in the solid are limited here, a statement
supported by experiment and molecular dynamics simulation (Xu, Cai & Liu 2018). In
deswollen regions where the polymer fraction is larger, κ is likely of the same order of
magnitude as κw, since the thermal diffusivity of polymer chains is of the same magnitude
as the thermal diffusivity of water (Freeman, Morgan & Cullen 1987). However, such
regions are a small fraction of the total spatial domain and the fact that the collapsed tube
is thin here means that we neglect any variation from κw in this region.

There are two potential time scales in the heat transfer problem in the gel – the
poroelastic time scale tpore of (3.1), and the thermal time scale ttherm = L2/κ . Their
ratio is

tpore

ttherm
= κ

D
= Le, (3.23)

the Lewis number, representing the ratio of thermal to compositional diffusivities. In the
case Le 
 1, (3.21) simply reduces to the diffusion equation, since all but the first term on
the right-hand side depend on the (slow) reconfiguration of the gel scaffold.

We know that flow and deformation of the gel is mediated by the low permeability of
the polymer scaffold, with k ∼ 10−15 m2, and therefore expect that the transfer of heat by
conduction will occur much faster than changes in shape to the gel. The compositional
diffusivity kΠ00/μl typically scales like 10−8 m2s−1, whilst κ ∼ 10−7 m2s−1, so Le ∼ 10.
In the present study, we restrict our attention to the large-Le limit for simplicity, where
heat transfer in both the gel and water can be modelled by

∂θ

∂τ
= ∂2θ

∂ Z2 with

{
θ(0, τ ) = 1,

θ → −1, as Z → ∞,
(3.24)

where θ = (T − TC )/�T . There are reasonable physical situations where these
assumptions do not apply, but we do not consider them here – modelling such cases would
require a careful consideration of heat transfer by advection, dispersion and diffusion, as
well as incorporating the effect of fast fluid flows into boundary conditions at the gel
surface (Xu et al. 2022). Equation (3.24) has a solution in terms of the error function, with

θ = 2erfc
(

Z

2
√

Le τ

)
− 1, (3.25)

where erfc is the complementary error function (Abramowitz & Stegun 1970). To
understand the response of the gel to the diffusive heat pulse, we first seek the position
of the deswelling front Z = ZC , where θ = 0. This is found using (3.25), with

erfc
(

ZC

2
√

Le τ

)
= 1

2
so ZC = 2erfc−1

(
1
2

)√
Le τ ≈ 0.9539

√
Le τ . (3.26)

3.6. Response to pulses of heat
Using the model summarised in (3.17), we can compute the mechanisms by which a
thermo-responsive gel tube will collapse in response to a temporally and spatially varying
temperature field (3.25). Key to the behaviour here is the fact that heat diffuses on a faster
time scale than the water can diffuse through the polymer, leading to a smooth front
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Parameter Value

Deswollen scaled polymer fraction Φ∞ 2
Ratio of osmotic pressure scales Π̃ 1
Aspect ratio ε = a1/L 0.1
Shear parameter M 1
Lewis number Le 10

Table 1. Parameter values used in the modelling of drying tubes from § 3.6 onwards, with the effect of
changing Φ∞, Π̃ and M discussed in § 3.4.

0

0

1

0.2 0.4

Z

R

0.6 0.8 1.0 0 0.2 0.4

Z
0.6 0.8 1.0 0 0.2 0.4

Z
0.6 0.8 1.0

1

1.5

2
τ = 0 τ = 0.025 τ = 0.05 Φ

Figure 8. Plots of the evolution of a hollow thermo-responsive hydrogel tube with parameters from table 1
and � = 0.25. The heat pulse diffuses from left to right, with the gel shrinking behind it.

centred on the pulse front ZC (τ ). From this point onwards, we will use the parameters
in table 1 in all modelling, having discussed the effect of varying M and Π̃ on the one-
dimensional deswelling in previous sections. Figure 8 shows the thickness of a tube at
different times as heat diffuses and the gel shrinks. Notice that the shrinkage, though
rapid, is not instantaneous in time, since the slow diffusion of water out of the walls of the
tube sets a delayed response.

For the gel to deswell, water must flow from the walls of the tube into the surrounding
water, the lumen at the centre of the tube, or through the gel itself parallel to the axis.
Clearly, if the walls of the tube are thinner, driving water from the hydrogel is more rapid,
since the water has less of a distance to diffuse outwards, and we expect a more rapid
response to changes in temperature for larger values of �. The more rapid approach to
steady state is shown in figure 9(a), where the sharper equilibrium profile is approached
more closely around the drying front ZC (τ ) for thinner tube walls. Assuming that the
radial fluxes are locally dominant, (3.17) reduces to the one-dimensional case of § 3.4,

∂Φ1

∂τ
≈ 16Φ

2/3
1 D

ε2(1 − �)2 ×
{

Φ∞ − Φ1, Z < ZC ,

1 − Φ1, Z > ZC ,
(3.27)

away from the front at Z = ZC (where ∂Φ1/∂ Z will be significant). Then, time scales
decrease like (1 − �)2 when � is increased. In the opposite limit as � → 0, adjustment
happens on the unmodified poroelastic time scale.

From figure 8, it is clear that the structure of the solution around Z = ZC (τ ) appears
to propagate like a travelling wave centred on the deswelling front, since the contribution
of axial flows through the gel is limited compared with that of radial flows. Therefore, we
can consider the quasi-one-dimensional problem in the new coordinate Z − ZC . The plots
in figure 9 suggest that polymer fraction can locally be approximated by a smooth step
around Z = ZC (τ ), with the steepness a function of thickness �. We thus propose that
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Relaxation to the equilibrium

polymer fraction around ZC

Fitted values of A (ℓ) showing

that A ∼�  (1−ℓ)−1

–0.10
1.0

1.2

1.4

1.6

A 
(ℓ

)

1.8

2.0

–0.05 0

Z – ZC

0.05

Φ0

Φ1

0.10 10–1

1

1

1 – ℓ

102.0

102.5

100

ℓ = 0.1

ℓ = 0.25

ℓ = 0.5

ℓ = 0.75

ℓ = 0.9

(a) (b)

Figure 9. Plots of the interior polymer fraction Φ1 at τ = 10−2 with the same parameters as in figure 8, showing
how the relaxation to the steady state Φ = Φ0(T ) around the drying front Z = ZC (τ ) is much faster for thinner
tubes � → 1. These profiles can be approximated by a tanh function, as in (3.28), with fitting parameter A(�)

shown in the logarithmic plot on the right.

Φ1 ≈ Φ∞ − Φ∞ − 1
2

{1 + tanh [A(�) (Z − ZC )]} , (3.28)

for some scaling factor A, a function of �, representing the sharpness of the drying front.
Figure 9 shows that A(�) ∼ (1 − �)−1 and therefore the thickness of the adjustment region
around the front Z = ZC (τ ) scales like (1 − �).

3.6.1. Flow through the walls
Flow in the walls of the tube is driven by diffusive transport of water from more swollen
regions to drier regions, with an interstitial fluid velocity

ug = D(φ)

φ
∇φ = kΠ00

μl

(
1
L

∂Φ1

∂ Z
ẑ + ε2

a1

∂Φ2

∂ R
r̂
)

×
{

Π̃
Φ∞ + 4M

3 Φ
−2/3
1 , Z < ZC ,

1 + 4M
3 Φ

−2/3
1 , Z > ZC ,

(3.29)
at leading order in the aspect ratio. We define a dimensionless radial fluid velocity Ug
scaled with a1 divided by the poroelastic time scale and an axial velocity Vg scaled with
L divided by the same time scale, so that

(
Vg, Ug

)=
(

∂Φ1

∂ Z
,

∂Φ2

∂ R

)
×
{

Π̃
Φ∞ + 4M

3 Φ
−2/3
1 , Z < ZC ,

1 + 4M
3 Φ

−2/3
1 , Z > ZC .

(3.30)

Figure 10 illustrates an example flow field through the walls of the gel, with flow from
more swollen to less swollen regions. In the dried region behind the temperature front,
radial fluxes are outwards as water is driven out of the shrinking gel, with fluid transported
axially towards the drier regions to the left. In Z > ZC , however, fluxes are inwards towards
the gel. To understand why this is, notice that the gel is more swollen on its interior than
exterior when Z < ZC (as the tube fully dries from the outside in) and more swollen on
its exterior than interior when Z > ZC (as the tube is fully swollen on R = B1 with some
loss of fluid in the interior due to axial fluxes towards the drier tube). Hence, there needs
to be water drawn in from the surrounding fluid to replenish these regions.

In general, therefore, the tube draws water inwards ahead of the deswelling front and
then expels the water behind this front. This is shown in detail in figure 11, where the
dominance of radial fluxes in thinner gel layers is also clear.
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Figure 10. A plot at τ = 0.02 of a drying gel tube with the same parameters as in figure 8. The colours represent
the polymer fraction field, with arrows in the gel showing the direction and magnitude of the interstitial flow
field ug , as defined in (3.29). The arrows within the lumen show the flow within the tube, with the form of
(3.34).

1.0
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0.6
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Φℓ = 0.75ℓ = 0.25

Figure 11. Plots close to Z = ZC (τ ) when τ = 0.025, illustrating dominant radial flows when the gel is thinner
(� = 0.75) versus the thicker (� = 0.25) gel. In all other regards, the parameters are the same as in figure 10.
Notice the directional change either side of the drying front.

3.6.2. Flow in the lumen
There is also a flow of water through the lumen of the tube, resulting from mass
conservation and the redistribution of fluid as the tube dries out. Assuming that the flow
within the tube lumen can be described by a Stokes flow v = vr r̂ + vz ẑ with viscosity μl ,

μl∇2v − ∇ p = 0 and ∇ · v = 0. (3.31)

Using the slenderness approximation and assuming that pervadic pressure is independent
of r , axial derivatives can be neglected in the radial component of the momentum equation
and it is found that the radial component of the velocity must be linear in r if it is to be
regular at r = 0, and so

vr = C(z)r and vz = −2
∫ z

0
C(z′) dz′, (3.32)

assuming that vz = 0 at z = 0 by symmetry. We then non-dimensionalise to find a radial
velocity U scaled with a1 divided by the poroelastic time scale, and an axial velocity V
scaled with L divided by the poroelastic time scale. The radial velocities in the gel are
given by

Ug = 8Φ
2/3
1 D(Φ1) [Φ0(T ) − Φ1]

ε2(1 − �)2

(
R − 1 + �

2
Φ

−1/3
1

)
, (3.33)
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Plots of the axial flow velocity

at different times τ =10−4 to

τ =10−1 when A = 100

The maximum velocity Vmax
when A is varied, showing

Vmax ∼ A−1 ∼ 1 – ℓ

0

0.005

0.010

0.015

0.2 0.4
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V Vm
ax

0.6 0.8 1.0 100

1

1

101
10–3
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10–1

100

A
102 103

(a) (b)

Figure 12. Plots showing the approximate axial velocity V (computed using the form of Φ1 in (3.28)) for the
parameters in table 1, showing how fluid travels in a pulse from the left to the right, with the height of the pulse
inversely proportional to the fit parameter A(�).

and therefore, matching velocities at R = �Φ
−1/3
1 ,

U = −4Φ1D [Φ0(T ) − Φ1]
ε2(1 − �)2 R and V = 8

ε2(1 − �)2

∫ Z

0
Φ1D [Φ0(T ) − Φ1] dZ ′.

(3.34)
Behind the temperature front, flow is radially inwards, since the gel dries into its interior,
and this drives a forwards flow along the tube by mass conservation. The magnitude of
this flow decreases ahead of the front as there is a weak outward radial flow here.

We can gain some insight into the nature of the axial fluid transport V by considering
the fitted form of (3.28), from which we can calculate the evolution of velocity in time.
Figure 12 shows how fluid, stationary far behind the temperature front, is driven in the
same direction as the thermal front, with a maximum axial velocity Vmax at Z = ZC (τ ).
The velocity the decays to a constant value in the tube ahead of the front, which is non-zero
by mass conservation. Figure 12(b) shows that the height of this axial flow pulse scales
like A(�)−1 ∼ 1 − �. Since the thickness of this adjustment region scales like A(�), the
height of the pulse increases with �, but its width decreases with �, such that the total flux
carried by the pulse is constant as � is varied.

3.7. Summary of results
In this section, we have used the conceptually simple model for a responsive tubular pump
to illustrate a number of results attainable using the responsive LENS formalism that can
then be applied to the design of more complicated responsive hydrogel devices. First,
we illustrated how the relative impermeability of hydrogels allows for the gel dynamics
problem to be decoupled from the fluid flow within cavities (in this example, the lumen of
the gel tube), so that the induced pumping flows can be straightforwardly deduced as an
output of our modelling, as justified in Appendix B. This allowed us to construct an explicit
model for the deswelling of responsive gels as the temperature is changed, quantifying
exactly how this deswelling is more rapid for tubes that are thinner ∼ (1 − �)2 and showing
how response times can be tuned by varying �, the thickness parameter.

Furthermore, the assumption of slenderness and the separation of time scales between
slower poroelastic deformation and faster transport of heat allows for decoupling between
the thermal problem and the poroelastic problem, and so modelling the behaviour of a
thermo-responsive tube to a time- and space-varying temperature field is possible in this
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framework. We have seen how a tube relaxes to a new equilibrium state around a thermal
front and can quantify the spatial structure of the adjustment region, which is smoother and
less well-defined for thicker tubes than thinner tubes that approach the equilibrium faster.
Perhaps most instructively, the LENS model gives clear expressions for the interstitial
flow velocities both along the axis of the tube and out of the walls, as well as the velocities
within the hollow lumen, permitting predictions of the nature of the axial pumping fluxes
to be made when a tube is heated from one point.

4. Conclusion
In this paper, we have extended the linear-elastic-nonlinear-swelling model outlined by
Webber & Worster (2023) to incorporate a temperature-dependent osmotic pressure that
can reproduce this behaviour when the temperature is brought above the LCST threshold.
The approach is generic and, in some sense, agnostic of the type of stimulus, and as such,
our model may be readily extended to, for instance, pH-responsive hydrogels.

We showed that the approach of the linear-elastic-nonlinear-swelling theory is able to
reproduce the transient swelling or deswelling behaviour of thermo-responsive gels both
qualitatively and quantitatively. By choosing functional forms for the osmotic pressure
and shear modulus that fit the parameters used by Butler & Montenegro-Johnson (2022),
we are able to use LENS to reproduce predictions from a full nonlinear Flory–Huggins
approach, provided that no spinodal decomposition occurs. Our model also provides
criteria for such phase separation to occur when the diffusivity – a function of macroscopic
osmotic pressure and shear modulus – is negative, and dried and swollen gels can coexist
adjacent to one another. To regularise solutions of the polymer fraction evolution equation
in these cases, it is likely necessary to incorporate some kind of surface energy to penalise
the formation of new surfaces (Hennessy, Münch & Wagner 2020), leading to Korteweg
stresses at internal interfaces. The question of how to describe such an approach in the
context of a LENS model remains a topic for future research, since the formation of sharp
polymer fraction gradients is not permitted in LENS.

Some of the key applications of thermo-responsive hydrogels are hampered by the
slow response times of such gels to changes in the ambient temperature. In general,
hydrogel swelling or drying is a slow process, mediated by viscously dominated interstitial
flows through a low-permeability scaffold, with some gels taking hours or days to reach
an equilibrium state (Bertrand et al. 2016). This is clearly undesirable in microfluidic
devices or actuators, and having a tunable response time to changes in temperature may be
desirable for certain applications (Maslen et al. 2023). To investigate the response time of
simple gel structures, we have considered the case of a hollow tube of gel that can act like
a displacement pump.

In this geometry, even though the axial dimension may be large, deformation time scales
are set by the diffusion of water through the thin walls, so morphological changes can
occur much more rapidly than they would in a solid gel. This occurs because the shrinkage
of the outside of the tube is no longer rate-limited by the need to deform and drive fluid
through the interior of the gel, since water can flow relatively unimpeded down the lumen
of the tube. The transport of water through the pipe-like structure that results can be used
as a proxy measure of the speed of response, with water being transported large distances
surprisingly quickly as a thermal signal propagates.

To model these tubes, we made a slenderness approximation that the polymer fraction
varies axially at leading order, with only small radial corrections as water is expelled from
the gel as the critical temperature threshold is exceeded. This facilitated a mathematical
treatment similar to that used for transpiration through cylinders by Webber et al. (2023),
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and thus we can write down analytical expressions for all of the interstitial fluid fluxes
in the gel and in the lumen. This approach permits us to tune the geometry of the tubes
to match the exact response times desired, and allows for the computation of fluid flows
through the pore matrix, along the axis of the tube and out of the side walls.

Though there is no definitive measure of ‘response time’ in more complex geometries,
we have discussed how varying the geometry and material properties of the gel that forms
the tube lining can affect the speed at which fluid is transported through the lumen and
the sharpness of the fluid pulse at the deswelling front. As one might expect, it is seen
that thinner tubes react more rapidly to changes in temperature and also that the resultant
fluid pulse is more spatially localised around the thermal pulse in such cases. We have also
elucidated the dependence of the fluid pulse driven down the pump on both the osmotic
and elastic properties of the material forming the tube, enabling the design of displacement
pumps with specific response characteristics.

In the future, these simple model tubes could be connected together to form a network,
propagating information about external stimuli through the medium of fluid pulses much
more rapidly than in a solid block of hydrogel, forming the basis for a porous sponge built
from porous hydrogel, with the pore size and geometry designed to match the desired
material properties. This approach has already been taken experimentally in the design
of microfluidic devices that exhibit dynamic anisotropy (Maslen et al. 2023), and we hope
that our modelling will provide potential qualitative insights into the design characteristics
of such devices in the future.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.249.
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Appendix A. LENS material parameters from an energy-based approach
Butler & Montenegro-Johnson (2022) used the standard energy density function for a
thermo-responsive hydrogel (Cai & Suo 2011), following Flory–Huggins mixture theory
and a neo-Hookean elastic model for the polymer chains,

W = kB T

2Ωp

[
tr
(
FdFd

T)− 3 + 2lnφ
]+ kB T

Ω f

[
1 − φ

φ
ln(1 − φ) + χ(φ, T )(1 − φ)

]
,

(A1)
where Fd is the deformation gradient tensor measured relative to a fully dry polymer.
We can rewrite Fd in terms of F, the deformation gradient measured relative to a state
where φ ≡ φ00, since the transition between the two states can be described by an isotropic
scaling transformation,

Fd =
(
φ

−1/3
00 I

)
F = φ

−1/3
00 F so tr

(
FdFd

T)= φ
−2/3
00 FabFab, (A2)

using Einstein summation convention. Following the approach of Cai & Suo (2012), the
Terzaghi effective stress tensor σ (e) (i.e. σ + pI ) has components given by

σ
(e)
i j = φ

∂W
∂Fik

F jk, (A3)
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again using summation convention. This derivation is based on the classical approach
by Coleman & Noll (1963), coupling a local entropy imbalance law with the expression
for the rate of change of internal energy (Brunner et al. 2024). Since det F = φ00/φ,
the expression for the derivative of a determinant with respect to a matrix (Petersen &
Pedersen 2012) implies that

∂φ

∂Fik
= −φF−1

ki . (A4)

Hence,

∂W
∂Fik

= kB T

Ω f

{
1

Ωφ
2/3
00

Fik+
[

ln(1 − φ)

φ
+ 1 + φχ(φ, T ) − φ(1 − φ)

∂χ

∂φ
− 1

Ω

]
F−1

ki

}
and

σ
(e)
i j = kB T

Ω f

{[
ln(1 − φ) + φ + φ2χ − φ2(1 − φ)

∂χ

∂φ
− φ

Ω

]
δi j + φ

Ωφ
2/3
00

FikF jk

}
,

(A5)

where Ω = Ωp/Ω f represents the volume of polymer molecules relative to solvent
molecules. Separating the deformation gradient into an isotropic part due to swelling and
shrinkage and a deviatoric part that can be related to deviatoric Cauchy strain ε (Webber
& Worster 2023),

FikF jk =
(

φ

φ00

)−2/3

δi j + 2φ00

φ
εi j , (A6)

and so the two temperature-dependent material parameters are

Π(φ) = kB T

Ω f

[
Ω−1

(
φ − φ1/3

)
− φ − ln(1 − φ) − φ2χ + φ2(1 − φ)

∂χ

∂φ

]
and

(A7a)

μs(φ) = kB T φ
1/3
00

Ωp
. (A7b)

Notice that the shear modulus is independent of polymer fraction, and increases with
temperature and chain length (longer polymer chains have a larger Ωp). The temperature
dependence of the osmotic pressure is more complicated, with contributions from the kB T
prefactor, χ , and ∂χ/∂φ.

To incorporate temperature dependence in χ(φ, T ), Butler & Montenegro-Johnson
(2022) specify an interaction parameter that depends linearly on both φ and T ,

χ(φ, T ) = A0 + B0T + (A1 + B1T )φ, (A8)

where the four parameters can be fitted to existing models in the literature. Here, we
consider two example models – the first is based on Afroze et al. (2000) (ANB), and
the second is based on Hirotsu et al. (1987) and henceforth referred to as HHT. The
fitting parameters, as found from Butler & Montenegro-Johnson (2022), are summarised
in table 2. Figure 13 shows plots of the osmotic pressure in the case of these two parameter
choices, showing (slightly) negative values of Π as φ → 0, corresponding to states with a
propensity to deswell, and Π → ∞ as φ → 1, illustrating very dry states with a propensity
to swell. As the temperature is increased, the location of equilibrium states changes.
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Model A0 A1 B0 B1 Ω

ANB (Afroze et al. 2000) −12.947 17.92 0.04496 K−1 −0.0569 K−1 100
HHT (Hirotsu et al. 1987) −62.22 −58.28 0.20470 K−1 0.19044 K−1 720

Table 2. Fitted parameter values for the two thermo-responsive hydrogels considered by Butler &
Montenegro-Johnson (2022), based on two pre-existing models from the literature.
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Figure 13. Plots of the osmotic pressure (A7a) for the two choices of fitted parameters in table 2 as the
temperature is raised from 300 K (below TC ) (blue) to 315 K (above TC ) (red). Notice the change in equilibrium
polymer fraction as the threshold is crossed.
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Figure 14. Plots of the equilibrium polymer fraction, determined by Π(φ0) = 0 in (A9). Two choices of
parameter values are plotted; those determined by Afroze et al. (2000) (ANB) and Hirotsu et al. (1987) (HHT),
showing the volume phase transition temperatures for swelling (T ↑

C ) and shrinking (T ↓
C ), respectively.

To find these equilibrium polymer fractions, we set Π = 0 and thus consider the
expression

Ω−1
(
φ0 − φ

1/3
0

)
− φ0 − ln(1 − φ0) − φ2

0 [A0 + B0T + (2φ0 − 1)(A1 + B1T )] = 0,

(A9)
for the two choices of parameters, and figure 14 shows the variation of φ0 with temperature
in both the ANB and HHT parameter sets. In the case of the parameters of Afroze
et al. (2000), it is especially apparent that there are two critical temperatures. As the
temperature is lowered from approximately 310 K, and the equilibrium polymer fraction
φ0 decreases (swelling), there is a rapid increase in swelling at T ↑

C ≈ 304.5 K, the swelling
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critical temperature. As the temperature is increased from approximately 300 K, however,
there is a different critical temperature, T ↓

C ≈ 306 K, at which there is rapid drying. This
hysteresis is in fact exhibited in the case of both sets of parameters, where there are
multiple solutions in a narrow band of temperatures around the critical volume phase
transition temperature TC , an effect which we ignore in the present study, modelling the
equilibrium polymer fraction as single-valued at any temperature.

In the low-temperature (i.e. swollen) states, we further assume that φ0 � 1, so the
leading-order balance of (A9) is

φ0 ≈
[
Ω

(
1
2

− (A0 − A1) − (B0 − B1)T

)]−3/5

, (A10)

equal to the classical approximation in gels that are not thermo-responsive (Doi 2009;
Webber & Worster 2023). In both of the models, this gives φ0 ∼ 0.01 for sufficiently low
temperatures, but there is a singularity at

T = 1 − 2(A0 − A1)

2(B0 − B1)
, (A11)

where the assumption of small polymer fraction can no longer be applied, corresponding
to approximately 308 K in the ANB model and 311 K in the HHT model. This is close to
the measured critical temperatures at which the affinity for water molecules drops rapidly
and the gel dries out, TC (equal to approximately 305 K and 307.6 K in the two cases,
respectively).

Appendix B. Quantifying the coupling between lumen flow and gel dynamics
Boundary conditions on the exterior of the tube are determined based on the assumption
that p ≡ 0 in the quiescent fluid surrounding the hydrogel tube, a reasonable assumption
in an unbounded fluid bath. However, assuming that p ≡ 0 on the interior of the tube,
where we would instead expect pressure gradients to balance viscous stresses resulting
from lumen fluxes, is not a valid approach to seeking an expression for the polymer fraction
at r = b0(z, t).

Making the assumption that pressures and stresses are independent of scaled radial
position R = r/a1 and depend only on the distance along the tube axis, we still impose
σrr = 0 at R = B0 = b0/a1. We must solve for the Stokes flow inside the lumen that
couples to the dynamics of the tube through a mixed boundary condition. Describing this
flow by v = vr r̂ + vz ẑ,

μl∇2v − ∇ p = 0 and ∇ · v = 0, (B1)

where μl is the dynamic viscosity of the water in the tube. Since p = p(Z), the radial
component of this equation gives

1
R

∂

∂ R

(
R

∂vr

∂ R

)
− vr

R2 + ε2 ∂2vr

∂ Z2 = 0, (B2)

which, at leading order in ε, is solved by vr = C(Z)R (requiring regularity at R = 0).
Thence, incompressibility allows us to find the form of vz ,

∂vz

∂ Z
+ 1

εR

∂

∂ R
(Rvr ) = 0 so vz = −2

ε

∫ Z

0
C(z′) dz′. (B3)
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This shows that, as expected, axial flows are much faster than radial flows, owing to
slenderness. Substituting vz into the axial component of (B1) shows that

∂p

∂ Z
= −2μl

a1

∂C

∂ Z
so p = −2μl

a1
C(Z), (B4)

on the assumption that p = 0 in regions where there is no deswelling, i.e. where C = 0 and
there is no flow. Hence, since p + Π(φ) = 0 at the inner tube surface,

φ2 = φ0(T ) − φ1

ε2 + 2μl

ε2a1Π0(T )
C(Z) at R = B0. (B5)

Notice that this forces both C(Z) (the magnitude of the pervadic pressure corrections) and
φ0 − φ1 to be order ε2, corresponding to a tube where the polymer fraction is everywhere
close to its equilibrium value. To find C(Z), we match radial fluid velocities in the gel and
the lumen,

vr = D(φ, T )

a1φ

∂φ

∂ R

∣∣∣∣
R=B0

so C(Z) = ε2 D(φ1, T )

a1φ1 B0

∂φ2

∂ R

∣∣∣∣
R=B0

, (B6)

resulting in order-ε2 corrections to the pervadic pressure field on the inside of the tube, as
expected. This combines with (B5) to give a mixed boundary condition on φ2 at R = B0,

φ2 − 2μl D(φ1, T )

a2
1φ1Π0(T )B0

∂φ2

∂ R

∣∣∣∣
R=B0

= φ0 − φ1

ε2 . (B7)

To understand the relative importance of terms on the left-hand side of this boundary
condition, introduce a non-dimensional coupling parameter G,

G ∼ μl D

a2
1Π0

∼ k

a2
1
, (B8)

scaling the diffusivity using its form in (3.8), D ∼ kΠ00/μl . Since we expect k ∼ 10−15 m2

(Etzold et al. 2021), it is reasonable to assume G � 1 for all tubes of relaxed radius a1 �
10−7 m – hence, it is possible to uncouple the interior flow from the dynamics of the
inner surface of the tube, and we can assume that the same boundary condition φ2 =
[φ0(T ) − φ1]/ε2 holds on the interior as on the exterior.

Appendix C. Thermoelasticity and heat transfer in gels
All hyperelastic models based on an energy density function W (the Helmholtz free
energy) require an approach based on thermodynamics to derive the components of the
stress tensor in terms of the deformation (Zaoui & Stolz 2001). A number of recent works
have sought models that couple chemical diffusion, thermodynamics and swelling to
model thermo-responsive gels, but these are usually formulated in terms of energy density
functions and not the Eulerian continuum-mechanical quantities in this study (Brunner
et al. 2024). Following a standard approach pioneered by Coleman & Noll (1963), and
detailed by Chester & Anand (2011) and Drozdov (2014), we can write down an expression
for the internal energy of a hydrogel per unit volume,

dUd

dt
= Rd − ∇d · Qd + P : dFd

dt
+ μ

dCd

dt
− Jd · ∇dμ, (C1)

where Rd is the external supply of heat per unit volume, Cd is the number density of water
molecules per unit reference volume, μ is the chemical potential, Qd is the heat flux, T is
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the temperature, Jd is the flux of water molecules, Fd is the deformation gradient tensor
from a dry reference state and P is the first Piola–Kirchhoff stress tensor. The subscript d
references quantities measured relative to a ‘dry’ reference state where φ ≡ 1 (as detailed,
for example, in (A2)).

In an Eulerian reference frame, it is standard to take Fourier’s law of conduction to
describe the heat flux Q, and the molecular flux of water J is simply found by dividing
the relative fluid volume flux by the volume of a single water molecule Ω f , such that

Q = −ρcκ∇T and J = − k(φ)

μlΩ f
∇ p, (C2)

where ρ is the material density, c is the specific heat capacity and κ is the
thermal diffusivity. Furthermore, an expression for Cd can be found by appealing to
incompressibility of water and polymer phases, such that any increases in volume from
the dry state are due to the addition of water molecules alone, and hence

Cd = φ−1 − 1
Ω f

so
dCd

dt
= − 1

Ω f φ2
dφ

dt
. (C3)

To rewrite the energy balance of (C1) in an Eulerian form instead of its usual Lagrangian
form with reference to a dry state, we make use of the assumption of LENS modelling that
all deformation is, at leading order, isotropic. Hence,

F ≈
(

φ

φ0

)−1/3

I so Fd ≈ φ−1/3I, (C4)

making use of the relation between F and Fd presented in (A2). This governing assumption
also allows us to replace all instances of ∇d with φ−1/3∇ at leading order in the deviatoric
strain, since the Eulerian state is approximately an isotropic dilatation of the fully dry
polymer reference state. The Piola–Kirchhoff and Cauchy strains are related via

P = φ−1σFd
−T ≈ φ−2/3σ hence P : dFd

t
≈ − 1

3φ2
dφ

dt
tr σ . (C5)

Finally, since lengths scale with φ−1/3 from the dry state to the swollen state, and volumes
correspondingly by φ−1,

U = φUd , R = φRd , Q = φ2/3 Qd and J = φ2/3 Jd, (C6)

and hence (C1) can be rewritten as
d
dt

(
U

φ

)
= R

φ
− φ−1/3∇ ·

(
φ−2/3 Q

)
− μ

Ω f φ2
dφ

dt
− 1

φ
J · ∇μ − 1

3φ2
dφ

dt
tr σ (C7)

= R

φ
+ cκφ−1/3∇ ·

(
φ−2/3∇T

)
− μ

Ω f φ2
dφ

dt
+ k(φ)

μlΩ f φ
∇ p · ∇μ − 1

3φ2
dφ

dt
tr σ .

Expanding all terms of this equation and noting that the pervadic pressure and chemical
potential are related by p = μ/Ω f alongside tr σ = −3(p + Π),

d
dt

(
U

φ

)
= R

φ
+ ρcκ

φ
∇2T − 2ρcκ

3φ2 ∇φ · ∇T + k(φ)

μlφ
|∇ p|2 + Π(φ)

φ2
dφ

dt
. (C8)

Now, if the internal energy is given by ρcT and the added assumption that density remains
approximately constant in time is made,

dT

dt
= R

ρc
+ κ∇2T − 2κ

3φ
∇φ · ∇T + k(φ)

ρcμl
|∇ p|2 + 1

φ

(
Π(φ)

ρc
+ T

)
dφ

dt
. (C9)
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LENS scalings show that gradients in polymer fraction are small on the order of the
deviatoric strain, and therefore the ∇φ · ∇T term is much smaller than that featuring
∇2T . Furthermore, we can replace the total derivatives with the material derivative
advecting with the deformation of the gel itself, so the leading order temperature evolution
equation is

∂T

∂t
+ q · ∇T = R

ρc
+ κ∇2T + k(φ)

ρcμl
|∇ p|2 + 1

φ

(
Π(φ)

ρc
+ T

)(
∂φ

∂t
+ q · ∇φ

)
.

(C10)
This heat equation shows how temperature evolves due to material fluxes (the advective
term), diffusion, and then two additional terms related to swelling and internal flows. The
first term is equal to (u · F)/ρc, where F = −∇ p, and so represents the rate of work
done by the pervadic pressure gradients in the interstitial flow. The second, related to the
osmotic pressure and changes in polymer fraction, arises as energy is either used up or
released as water molecules associate and dissociate with polymer chains, and can hence
be seen as an analogue of latent heat in phase change.
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