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A virtual PGLr–SLr correspondence for

projective surfaces

Dirk van Bree, AminGholampour, Yunfeng Jiang and MartijnKool

Abstract

For a smooth projective surface X satisfying H1(X,Z) = 0 and w ∈H2(X, μr), we
study deformation invariants of the pair (X, w). Choosing a Brauer–Severi variety
Y (or, equivalently, Azumaya algebra A) over X with Stiefel–Whitney class w, the
invariants are defined as virtual intersection numbers on suitable moduli spaces of
stable twisted sheaves on Y constructed by Yoshioka (or, equivalently, moduli spaces
of A-modules of Hoffmann–Stuhler).
We show that the invariants do not depend on the choice of Y . Using a result of de Jong,
we observe that they are deformation invariants of the pair (X, w). For surfaces with
h2,0(X)> 0, we show that the invariants can often be expressed as virtual intersection
numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on X. This
can be seen as a PGLr–SLr correspondence.
As an application, we express SU(r)/μr Vafa–Witten invariants of X in terms of SU(r)
Vafa–Witten invariants of X. We also show how formulae from Donaldson theory can
be used to obtain upper bounds for the minimal second Chern class of Azumaya
algebras on X with given division algebra at the generic point.
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1. Introduction

1.1 The SLr invariants

Let (X,H) be a smooth polarized surface over the complex numbers. Suppose H1(X,Z) = 0 and
take r ∈Z>0, c1 ∈H2(X,Z), c2 ∈H4(X,Z)∼=Z. We denote by M :=MH

X (r, c1, c2) the Gieseker–
Maruyama–Simpson moduli space of rank r Gieseker H-stable sheaves F on X satisfying
c1(F ) = c1 and c2(F ) = F [HL]. Then M is a quasi-projective scheme and it has a natural ‘com-
pactification’ by adding strictly semistable sheaves. Sometimes M is itself projective, e.g. when
gcd(r, c1H) = 1, in which case Gieseker stability and μ-stability coincide, and there are no rank
r strictly Gieseker H-semistable sheaves on X with Chern classes c1, c2. We view M as a partial
compactification of moduli spaces of holomorphic vector bundles, i.e. holomorphic principal GLr

bundles.
1

The moduli space M is virtually smooth; it has a perfect obstruction theory, studied by
Mochizuki [Moc09], with virtual tangent bundle

T vir
M =RHomπM

(E , E)0[1],
where πM :X ×M →M denotes the projection, RHomπM

=RπM∗ ◦RHom, (·)0 denotes trace-
free part and E is a universal sheaf on X ×M . In general, a universal sheaf E only exists étale
locally on X ×M , but the virtual tangent bundle exists globally by [Cal00, Theorem 2.2.4] (see
also [HL10, §10.2]). We assume gcd(r, c1H) = 1. Then M is projective and, by work of Behrend
and Fantechi [BF97] and Li and Tian [LT98], there exists a virtual fundamental class

[M ]vir ∈Avd(M), vd := vd(r, c1, c2) = rk(T vir
M ) = 2rc2 − (r− 1)c21 − (r2 − 1)χ(OX),

where A∗(M) denotes the Chow group of M .
Intersection numbers obtained by capping with the virtual fundamental class play a key role

in enumerative geometry, gauge theory and physics. Examples of such intersection numbers are
virtual Euler characteristics, χy-genera, elliptic genera, cobordism classes, Donaldson invariants,
Segre numbers and Verlinde numbers. In the cases HKX < 0 or KX

∼=OX , M is smooth of
expected dimension and these numbers have a long history going back (at least) to the 1990s. In
this paper, we focus on surfaces with a non-zero holomorphic 2-form, i.e. h2,0(X)> 0, in which
caseM is typically singular and may not have expected dimension (see e.g. [MS18] for examples).

1Since we assume H1(X, Z) = 0 fixing c1 is equivalent to fixing the determinant, so for c1 = 0 we are considering
holomorphic principal SLr bundles.
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For a (partial) survey on this rich subject, we refer to [GK20a] and references therein. One key
feature of these ‘virtual intersection numbers’ is that they are invariant under deformations of
X.

Perhaps the most interesting case is the generating function of virtual Euler characteristics

ZSLr,Eu
(X,H),c1

(q) =
∑
c2

q
vd(r,c1,c2)

2r

∫
[MH

X (r,c1,c2)]vir
c(T vir

MH
X (r,c1,c2)

),

where c(·) denotes the total Chern class, which plays a central role in Vafa–Witten theory [TT20].
In the ground-breaking work of Vafa and Witten [VW94] on S-duality andN = 4 supersymmetric
Yang–Mills theory on the 4-manifold underlying X, such generating functions are predicted to
be Fourier expansions of meromorphic functions on the upper half-plane with beautiful modular
properties. Notably, under the S-duality transformation, a certain generating function associated
with gauge group SU(r) and its Langlands dual PSU(r) = SU(r)/μr are related. We denote by
μr the multiplicative cyclic group of order r.

In this paper, we consider essentially arbitrary intersection numbers on Gieseker–Maruyama–
Simpson moduli spaces obtained as polynomial expressions in ‘descendent insertions’ as defined
in §4.2. Besides virtual Euler characteristics this includes, e.g. the Segre and Verlinde numbers
studied in [GK22, GM22, MOP22, Yua22]. For a choice of formal insertions P, we denote the

corresponding generating function by ZSLr,P
(X,H),c1

(q). There are several powerful tools for the calcu-

lation of virtual intersection numbers, notably Mochizuki’s formula [Moc09] and the new vertex
algebra wall-crossing technology developed by Joyce and collaborators [GJT22, Joy21].

1.2 The PGLr invariants

In this paper, we are interested in compactifications of moduli spaces of holomorphic Pr−1-
bundles, i.e. holomorphic principal PGLr bundles with r > 1. The correct approach for dealing
with these objects within algebraic geometry is by using moduli spaces of twisted sheaves . Instead
of first Chern class c1, we now fix a Stiefel–Whitney class

2

w ∈H2(X, μr), where we view the
multiplicative group μr of rth roots of unity as a constructible sheaf on X in the étale topol-
ogy. In fact, H2(X, μr) is isomorphic to the singular cohomology group H2(X,Z/rZ), where X
is endowed with its complex analytic topology [Mil13, Theorem 21.1]. The inclusion μr ≤Gm

induces a map

o :H2(X, μr)→H2(X,Gm),

where H2(X,Gm) is isomorphic to the Brauer group Br(X). For α := o(w), there are many
models for twisted sheaves on X.

• Căldăraru [Cal00]. Perhaps the most intuitive approach is to represent α∈H2(X,Gm) by
a Čech 2-cocycle {αijk ∈H0(Uijk,Gm)}, where {Ui →X} is an étale cover and we write
Uij =Ui ×X Uj , Uijk =Ui ×X Uj ×X Uk. Then an α-twisted sheaf consists of a collection of
sheaves {Fi ∈Coh(Ui)} together with isomorphism {φ : Fi|Uij

→ Fj |Uij
} satisfying φii = id,

φji = φ−1
ij , and φij ◦ φjk ◦ φki = αijk · id for all i, j, k.

• Yoshioka [Yos06]. Let [π : Y →X]∈H1(X,PGLr) be a degree r Brauer–Severi variety, i.e.
étale Pr−1 fibre bundle, with Stiefel–Whitney class w(Y ) =w ∈H2(X, μr). It is a conse-
quence of the period-index theorem, proved by de Jong [dJo04], [Lie08, Corollary 4.2.2.4],
that such a Brauer–Severi variety exists. Yoshioka defines the notion of Y -sheaves. These

2In physics parlance, w is called the ’t Hooft flux [VW94].
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are essentially pull-backs of α-twisted sheaves from X to Y tensored with the −π∗α-twisted
line bundle OY (1), which removes the twist.

• Lieblich [Lie07]. Let G →X be the μr-gerbe associated with w ∈H2(X, μr). Then Lieblich
introduces twisted sheaves on G. Roughly speaking, coherent sheaves on G decompose with
respect to the character group of μr and the twisted sheaves are the weight 1 eigensheaves.

• Hoffmann and Stuhler [HS05]. One can also view elements of H1(X,PGLr) as isomorphism
classes of degree r Azumaya algebras on X. Indeed, there exists a non-trivial extension
0→OY →G→ TY/X → 0 (unique up to scaling), where TY/X denotes the relative tan-
gent bundle. Then A= π∗(End(G∨)) is the degree r Azumaya algebra corresponding to
Y (Lemma 2.4, Proposition 2.5). Suppose A has Stiefel–Whitney class w ∈H2(X, μr). Then
Hoffmann–Stuhler introduce moduli spaces of (left) A-modules which are generically simple.
These modules provide another model for twisted sheaves. Azumaya algebras are general-
izations of central simple algebras, which in turn are generalizations of division algebras.
The latter have a long history dating back to Hamilton.

We survey these models for twisted sheaves and their equivalences in §2. We will mostly work
with the moduli spaces of Yoshioka and Hoffmann–Stuhler, and occasionally the one of Lieblich
(§3.2).

Let Y →X be a degree r Brauer–Severi variety with Stiefel–Whitney class w :=w(Y )∈
H2(X, μr). Then we consider the generating function of virtual Euler characteristics

3

ZPGLr,Eu
(X,H),w (q) =

∑
c2

q
vd(r,0,c2)

2r

∫
[MH

Y (r,0,c2)]vir
c(T vir

MH
Y (r,0,c2)

),

where we assume all of the moduli spaces of H-stable Y -sheaves MH
Y (r, 0, c2) (which we recall

in §3) are projective. For instance, this is the case when the Brauer class o(w)∈H2(X,Gm) has
order r. Indeed, then there are no Y -sheaves F of rank 0< rk(F )< r, thus stability is automatic
and there are no rank r strictly semistable Y -sheaves (Remark 3.5). In this case, the generating
function does not depend on the choice of polarization H and we write

ZPGLr,Eu
X,w (q) = ZPGLr,Eu

(X,H),w (q).

We show in Proposition 4.9 that the generating function does not depend on the choice of degree
r Brauer–Severi variety Y →X.

As in the SLr case, we also consider arbitrary polynomial expressions in descendent insertions
on moduli of twisted sheaves. For any choice of formal insertions P, we denote the corresponding
generating function by ZPGLr,P

(X,H),w(q) (see §4.2 for the precise definition).

The third-named author first introduced the use of twisted sheaves to Vafa–Witten theory
in [Jia22]. This was used by the third- and fourth-named authors in [JK21] to introduce the
PSU(r) Vafa–Witten partition function when r is prime. Denoting εr := exp(2π

√−1/r), it has
the following form:

VW
PSU(r)
X,c1

(q) =
∑

w∈H2(X,μr)

εc1wr VWX,w(q),

where VWX,w(q) = ZPGLr,Eu
X,w (q), if 0 �= o(w)∈Br(X). (1)

3As it stands, the second Chern class c2 is rational. It can be made integral by ‘twisting by the B-field’ [HS05]
(Proposition 3.3).
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1.3 Main results

The construction of the PGLr generating function on X depends on a choice of a degree r
Brauer–Severi variety Y →X with w(Y ) =w. Since Y may be obstructed when deforming X,
deformation invariance of the generating function is not immediate. However, by a result of de
Jong [dJo04], when Y is obstructed one can always apply an elementary transformation after
which it becomes unobstructed. We recall this result in Theorem 4.12. This will lead to the
deformation invariance, which we will now describe.

Let f :X →B be a smooth projective morphism of relative dimension 2 with connected fibres
over a smooth connected variety B. Suppose that one fibre (and hence all fibres) Xb satisfies
H1(Xb,Z) = 0. We fix a family of polarizations H on X and we consider μr as a constructible
sheaf in the étale topology on X . Then R2f∗μr is a constructible sheaf and

(R2f∗μr)b ∼=H2(Xb, μr)

for all closed points b∈B by the proper base change theorem [Mil13, Theorem 17.7]. We fix a
section

w̃ ∈H0(B, R2f∗μr).

In this paper, we only want to consider the case where there are no strictly semistable objects
anywhere in our family. This can be achieved by the following two assumptions:

• r is prime; and

• gcd(r, w̃bHb) = 1 for some (and hence all) closed points b∈B.

Since r is prime and w̃b ∈H2(Xb, μr) for any closed point b∈B, the order of o(w̃b)∈
H2(Xb,Gm) is either 1 or r. Then for any degree r Brauer–Severi variety Y over Xb and any
c2, the moduli space MHb

Y (r, 0, c2) is projective (Lemma 4.11). Roughly speaking, in the case of
trivial Brauer class, we are in the untwisted setting and the second condition rules out strictly
semistable objects (Proposition 4.10), whereas in the case of non-trivial Brauer class, stability
is automatic for all rank r torsion free twisted sheaves, so in particular there are no strictly
semistables (Remark 3.5). In order to deal with strictly semistable objects, one should work
with a notion of twisted Joyce–Song–Mochizuki pairs [Joy21, JS12, Moc09].

Theorem 1.1. Let w̃ ∈H0(B, R2f∗μr) be a section. Suppose r is prime and gcd(r, w̃bHb) = 1

for some (and hence all) closed points b∈B. Then ZPGLr,P
(Xb,Hb),w̃b

(q) is independent of the closed

point b∈B.

This leads us to the following SLr–PGLr correspondence.

Theorem 1.2. Let w̃ ∈H0(B, R2f∗μr) be a section. Suppose r is prime and gcd(r, w̃bHb) = 1
for some (and hence all) closed points b∈B. Suppose for some closed point 0∈B, there exists
a class β ∈H1,1(X0) such that the following composition is surjective:

TB|0 KS0−→H1(X0, TX0
)

∪β−→H2(X0,OX0
),

where the first arrow is the Kodaira–Spencer map and the second is cupping with β followed
by contraction. Then any complex analytic simply connected neighbourhood U of 0 contains a
closed point b∈U such that w̃b ∈H2(Xb, μr) has trivial Brauer class and

ZPGLr,P
(X0,H0),w̃0

(q) = ZSLr,P
(Xb,Hb),c1

(q),

where c1 ∈H2(Xb,Z) is any (necessarily algebraic) representative of w̃b.
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The condition of the theorem is mild; it says that there exists at least one β ∈H1,1(X0)
for which the Noether–Lefschetz locus is smooth of expected codimension [Voi13]. The same
assumption is used by Green to show that the Hodge locus is dense [Voi03]. When β is an
effective algebraic class, this condition appears in the work of Thomas and the fourth-named
author on reduced Gromov–Witten/stable pairs theory, and the enumerative geometry of curves
in the linear system |β| [KT14a, KT14b].

We discuss examples for which the condition of the theorem is satisfied in § 5.1. For example,
when X ⊂ P3 is a smooth surface of degree d≥ 4, we consider

X →B ⊂ |OP3(d)|
the smooth family of smooth degree d surfaces. Then the locus of points b∈B for which there
exists a β satisfying the condition of Theorem 1.2 is dense by a result of Kim [Kim91]. Hence,
we can first use Theorem 1.1 to deform to a point in B where the condition of Theorem 1.2 is
satisfied, and then apply Theorem 1.2 to express the PGLr generating function for X in terms
of the SLr generating function.

When o(w̃0)∈Br(X0) has order r (so in particular h2,0(X0)> 0), we note that ZPGLr,P
(X0,H0),w̃0

(q) =

ZPGLr,P
X0,w̃0

(q) does not depend on the polarization. In particular, it follows that ZSLr,P
(Xb,Hb),c1

(q)

does not depend on the polarization. It also follows that ZSLr,P
(Xb,Hb),c1

(q) only depends on c1

mod rH2(Xb,Z).
Theorem 1.2 can be viewed as some kind of virtual PGLr–SLr correspondence. For the

comparison of the cohomology of the analogues of our moduli spaces on a smooth projective curve
C, we refer to the work of Harder and Narasimhan [HN75]. Note, however, that Br(C) = 0, so the
complication is rather in dealing with torsion in Pic(C), which leads to questions of a different
flavour. Note that we assume H1(X,Z) = 0 so Pic(X) is torsion free. It will be interesting to
study analogues of Theorem 1.2 when H1(X,Z) �= 0. See [Nes23] for work in this direction when
X is the product of two curves. In the curve case, upgrade to Higgs moduli spaces is an active
research area [GWZ20, HT03, HL22, MS18]. In the surface case, upgrade to Higgs moduli spaces
is the content of the S-duality conjecture.

The intuitive idea behind the PGLr–SLr correspondence of Theorem 1.2 is as follows.
4

We
start with a holomorphic PGLr-bundle Y on X with Stiefel–Whitney class w. By our assumption
H3(X,Z) = 0, it is of the form P(E) for a C∞ GLr-bundle E on X with first Chern class ξ which
is possibly not of Hodge type (1, 1). However, by the Hodge theoretic result in Proposition 5.3
(which involves adding large r-multiples to ξ), we show that, under our assumption on the
Noether–Lefschetz locus and after a small change of complex structure of X, one can arrange
E to be holomorphic and ξ to be (1, 1). Therefore, if the original PGLr-bundle Y was unob-
structed, which can be arranged by de Jong’s result (Theorem 4.12), then Y = P(E) with E a
holomorphic GLr-bundle in the new complex structure, and this E is unique after fixing its deter-
minant. Instead, we first completely settle the deformation invariance question in Theorem 1.1
in the algebro-geometric category, and then use the (complex analytic) Hodge theory result in
Proposition 5.3 to find a complex structure where the PGLr count becomes an SLr count.

1.4 Consequences

1.4.1 Application to Vafa–Witten theory In [GKL24, Conjecture 1.10], the fourth-named
author and Göttsche–Laarakker conjecture a structure formula for the SLr generating function

4We thank one of the anonymous referees for this exposition.
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of virtual Euler characteristics (Conjecture 5.5). It appears this conjecture will be proved in a
forthcoming work of Joyce as an application of his vertex algebra wall-crossing formula [Joy21].
Combined with Theorem 1.2, it leads to a structure formula for the PGLr generating function of
virtual Euler characteristics as we now describe. Consider the normalized discriminant modular
form

Δ(q) =

∞∏
n=1

(1− qn)24.

Denote by εr = exp(2π
√−1/r) a primitive rth root of unity.

Let X be a smooth projective surface satisfying H1(X,Z) = 0 and h2,0(X)> 0. For an alge-
braic class a∈H2(X,Z), the linear system |a| has a perfect obstruction theory and virtual
class |a|vir in degree a(a−KX)/2. If |a|vir �= 0, then a2 = aKX and SW(a) := deg(|a|vir) [Moc09,
Proposition 6.3.1]. This is the algebro-geometric definition of Seiberg–Witten invariants of X. A
class a∈H2(X,Z) is called a Seiberg–Witten basic class when SW(a) �= 0.

Corollary 1.3. For any prime rank r > 1, there exist
5

D0, {Dij}1≤i≤j≤r−1 ∈C[[q
1

2r ]]

with the following property. Suppose X =X0 and w= w̃0 for a family X →B satisfying the
conditions of Theorem 1.2 and h2,0(X)> 0. Fix any δ ∈Z such that δ ≡−(r− 1)w2 − (r2 −
1)χ(OX) mod 2r. Then Conjecture 5.5 implies that the coefficient of qδ/2r in ZPGLr,Eu

(X,H),w (q) equals

the coefficient of qδ/2r in

r2+K2
X−χ(OX)

(
1

Δ(q
1

r )
1

2

)χ(OX)

D
K2

X

0

∑
(a1,...,ar−1)∈H2(X,Z)r−1

∏
i

εiaiw
r SW(ai)

∏
i≤j

D
aiaj

ij .

Suppose, in this corollary, X is moreover minimal of general type. Then its only Seiberg–
Witten basic classes are 0, KX with Seiberg–Witten invariants 1, (−1)χ(OX) [Mor96, Theorem

7.4.1]. Therefore ZPGLr,Eu
(X,H),w (q) only depends on

wKX mod r, K2
X , χ(OX).

The novel feature of this corollary is that it provides an interpretation of the formulae in
[GK18, GK20b, GKL24] in the case w has non-trivial Brauer class, i.e. it cannot be represented
by an algebraic class. By equation (1), this essentially determines the structure of the PSU(r)
Vafa–Witten partition function of X for prime rank r and w ∈H2(X, μr) with non-trivial Brauer
class. This reduces Vafa–Witten’s enigmatic S-duality conjecture (mathematically formulated
in [JK21]) to a conjecture on the SU(r) side.

1.4.2 Application to cmin
2 of Azumaya algebras Let X be a smooth projective surface with

H1(X,Z) = 0 and function field C(X). Let D be a (central) division algebra over C(X) of degree
r > 1 (equivalently, an element of Br(C(X)) of order r). We assume D lies in the image of the
inclusion Br(X) ↪→Br(C(X)) (basic facts on the Brauer group are reviewed in § 2.3, see also
[Sal99]).

Artin and de Jong [AdJ04] introduce the C-stack Ac2 , whose groupoid over a scheme B con-
sists of Azumaya algebras A on X ×B such that for all closed points b∈B, the stalk of A|b over
5These universal functions only depend on r.
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the generic point ofX is isomorphic toD and c2(A|b) = c2 ∈H4(X,Z)∼=Z. This stack is algebraic
and of finite type. Its coarse moduli space Ac2 is an algebraic space of finite type [AdJ04, Theorem
8.7.6]. If Ac2 is non-empty (i.e. has a C-valued point), then c2 ≥ 0 [AdJ04, Theorem 7.2.1]. It
interesting to consider the minimal value c2 = cmin

2 for which Ac2 is non-empty, because Acmin
2

,

Acmin
2

are proper [AdJ04, Theorem 8.7.7]. Artin and de Jong proved that [AdJ04, Corollary 7.1.5,
Theorem 7.2.1]

max{r2χ(OX)− h0(ω⊗r
X )− 1, 0} ≤ cmin

2 .

We show the following.

Theorem 1.4. Suppose X =X0 for a family X →B satisfying the conditions of Theorem 1.2,
and X is a minimal surface of general type satisfying h2,0(X)> 0. Let D ∈Br(C(X)) be a degree
r division algebra in the image of Br(X) ↪→Br(C(X)). Then, for r= 2, we have

cmin
2 ≤ 3χ(OX) + 1.

Moreover, for r= 3 and assuming Göttsche’s conjecture 5.9 for r= 3, we have

cmin
2 ≤ 8χ(OX).

For minimal surfacesX of general type, we have plurigenera h0(ω⊗r
X ) = 1

2r(r− 1)K2
X + χ(OX)

[Bom72]. For r= 2 and pg(X) =K2
X = 1 (which implies H1(X,Z) = 0 [Bom72]), this leaves very

little room: cmin
2 ∈ {4, 5, 6, 7}.

The r= 2 case of Theorem 1.4 is proved by combining Theorem 1.2 with Witten’s con-
jecture and a result of Hoffmann and Stuhler (Proposition 3.8). Witten’s conjecture, proved by
Göttsche, Nakajima and Yoshioka [GNY11] in the algebro-geometric set-up, expresses Donaldson
invariants in terms of Seiberg–Witten invariants (Theorem 5.8). The r= 3 case follows similarly,
but instead using the higher rank generalization of Witten’s conjecture by Mariño and Moore
[MM98] (see also [LM05]), or rather its explicit form in the algebro-geometric set-up due to
Göttsche [Got21].

This is an illustration of a general strategy described in detail in § 5.3. Suppose X =X0 for
a family X →B satisfying the conditions of Theorem 1.2.

• Show that some virtual intersection number
∫
[M ]vir P, for M some moduli space of twisted

sheaves on X of virtual dimension δ, is non-zero.

• Then there exists an Azumaya algebra A on X with Aη
∼=D satisfying c2(A)≤ δ+ (r2 −

1)χ(OX), where η is the generic point of X.

On the other hand, non-emptiness of Ac2 for large c2 was established by Lieblich (see
Remark 3.11).

Notation and conventions. In this paper, X always denotes a smooth projective variety over
C. If E is a locally free sheaf on any scheme, then P(E) is defined as Proj Sym•E, which is the
moduli space of quotients E�L with L an invertible sheaf. In this paper, we will use both
singular cohomology, with respect to the complex analytic topology, and étale cohomology. By
convention, H i(X,A) will denote singular cohomology when A=Z, Q, R, C or Z/rZ. On the
other hand, the groups A= μr, Gm, SLr, GLr, PGLr can be viewed as sheaves of groups μr(OX),
O×

X , SLr(OX), GLr(OX), PGLr(OX) in the étale topology and we denote the corresponding étale
cohomology groups by H i(X,A).
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2. Models of twisted sheaves

2.1 Brauer–Severi varieties, Azumaya algebras and gerbes

In this section, we recall the notions of Brauer–Severi variety, Azumaya algebra and gerbe, and
gather various known facts about them. Let X be a smooth projective variety over C.

Definition 2.1. A Brauer–Severi variety of degree r over X is a scheme Y →X for which
there exists an étale cover {Ui} of X on which Y →X is isomorphic to the projection Pr−1

Ui
:=

Pr−1 ×Ui →Ui. An Azumaya algebra of degree r on X is a coherent sheaf of OX -algebras A
for which there exists an étale cover {Ui} of X on which A is isomorphic to the matrix algebra
Mr(OUi

).

We will recall below that the data of a Brauer–Severi variety over X is equivalent to the
data of an Azumaya algebra on X. We first recall the following version of the Skolem–Noether
theorem [Mil80, Proposition IV.2.3].

Theorem 2.2. (Skolem–Noether). For any Azumaya algebra A on X and any automorphism
φ∈Aut(A), there is a covering of X by Zariski open subsets {Ui} such that φ|Ui

is of the form
a �→ uau−1 for some u∈ Γ(Ui,A)× for all i.

Corollary 2.3. We have an isomorphism of sheaves Aut(Mr(OX))∼=PGLr in the étale
topology.

Proof. The Skolem–Noether theorem implies that every automorphism of Mr(OX) is locally
given by conjugation by an invertible matrix, so that GLr →Aut(Mr(OX)) is a surjection of
sheaves. The kernel of this surjection is Gm from which the result follows. �

The facts in the following lemma are all proved in [Yos06, §1.1].
Lemma 2.4. If π : Y →X is a Brauer–Severi variety with relative tangent sheaf TY/X , then
there is a unique (up to scaling) sheaf G fitting in a non-trivial short exact sequence

0→OY →G→ TY/X → 0. (2)

Furthermore, the sheaf G satisfies the properties Rπ∗(G∨) = 0 and the canonical map
π∗π∗(End(G∨))→End(G∨) is an isomorphism, where End(G∨) :=G∨ ⊗G.

We now state the following classification result on Brauer–Severi varieties and Azumaya
algebras.

Proposition 2.5. There is a canonical bijection of sets between (isomorphism classes of)
Brauer–Severi varieties of degree r over X and Azumaya algebras of degree r onX. Furthermore,
both are equivalent to the set of PGLr-torsors, classified by H1(X,PGLr).

We only provide a sketch of the proof.

Sketch of proof. We first describe the bijection, for the details of this part we refer to [Ree18]. If
π : Y →X is a degree r Brauer–Severi variety, then π∗(End(G∨)) is a degree r Azumaya algebra.

6

Conversely, if A is a degree r Azumaya algebra on X, we can consider the moduli space of left

6We observe that Reede considers the opposite algebra End(G)op, which is isomorphic to End(G∨) as sheaves of
OX -algebras.
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ideals I ⊆A such that A/I is a locally free OX -module of rank r(r− 1), which is a degree r
Brauer–Severi variety over X.

For a degree r Brauer–Severi variety Y →X, we consider the sheaf Isom(Y, Pr−1
X ) of iso-

morphisms of schemes over X. This sheaf admits an action of Aut(Pr−1
X )∼=PGLr,

7

and locally,
where Y is trivial, this action is free and transitive. Therefore, this is a PGLr-torsor. Similarly,
for a degree r Azumaya algebra A on X, one can consider the sheaf Isom(A, Mr(OX)), which
is an Aut(Mr(OX))∼=PGLr-torsor by Corollary 2.3.

It is not hard to see that all PGLr-torsors onX are obtained in this way by a gluing argument:
if a cover {Ui} trivializes a PGLr-torsor on X, then the transition maps on the intersections
provide exactly a gluing data to glue copies of Pr−1 into a Brauer–Severi variety over X (and
similarly for a degree r Azumaya algebra on X). By a result on non-abelian cohomology [Gir71],
the set of PGLr-torsors on X is classified by H1(X,PGLr). �

Example 2.6. Let E be a locally free sheaf of rank r on X. Then, clearly, π : P(E∨) =
Proj(Sym•(E∨))→X is a degree r Brauer–Severi variety. It is even Zariski locally isomorphic
to Pr−1

X . Then G∼= π∗E(1) and its associated Azumaya algebra is End(E∨), the endomorphism
sheaf. Brauer–Severi varieties of this form are called trivial because their associated category of
twisted sheaves is actually untwisted, as we discuss in § 2.2.
Example 2.7. Azumaya algebras play a prominent role in number theory. Azumaya algebras over
Spec k, where k is a field, are precisely the central simple algebras over k. Thus, the quaternion
algebra H is an Azumaya algebra over Spec R. There are no non-trivial examples for k=C; over
algebraically closed fields every Azumaya algebra is trivial. In this paper, we focus on the the
case k=C(X), where C(X) denotes the function field of a smooth projective surface.

Example 2.8. Just as for Azumaya algebras, there are no non-trivial Brauer–Severi varieties
over Spec C. However, over Spec R there is a non-trivial example, the variety Y =Z(x2 + y2 +
z2)⊆ P2

R. After base change to the étale cover Spec C→ Spec R, Y is isomorphic to P1
C. This

Brauer–Severi variety corresponds to the quaternion algebra.

Definition 2.9. An algebraic stack G →X is called a gerbe on X if it satisfies the following
two conditions.

(1) G admits local sections: for any
8

T →X, there exists an étale cover {Ui → T} such that G
admits a section over each Ui.

(2) Sections of G are locally isomorphic: if x, y are sections of G over some T →X, then there
is an étale cover {Ui → T} with x|Ui

∼= y|Ui
for all i.

Let A be one of the groups in ‘Notation and conventions,’ viewed as a sheaf in the étale
topology. An A-gerbe onX is a gerbe G onX together with an isomorphism ψU,x :A(U)∼=Aut(x)
for each section x of G over an étale open U → T for any T →X. We require that ψ is natural
with respect to x and restriction along U . A morphism of A-gerbes on X is a morphism of stacks
over X that commutes with ψ.

There is also a theory of gerbes when A is non-abelian, which we will not need, but see
[Gir71], where the general theory is developed. We require the following facts from the theory
of gerbes, which can all be found in [Gir71, Chapter IV]:

7This isomorphism follows from [MFK02, §0.5].
8Morphisms T →X are always taken from the fppf site on X.
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Proposition 2.10.

1. Every morphism of A-gerbes on X is an isomorphism
9

. Thus, the category of A-gerbes on
X is a groupoid.

2. The stack of A-torsors, [∗/A]×X, forms an A-gerbe on X. An A-gerbe on X is equivalent
to this one if and only if it admits a section over X.

3. The set of equivalence classes of A-gerbes on X is canonically isomorphic to the sheaf
cohomology group H2(X,A). The stack of A-torsors corresponds to the unit.

As a consequence of the proposition, and the fact that gerbes admit local sections, every A-
gerbe on X is étale locally isomorphic to the stack of A-torsors [∗/A]×X. The converse is almost
true: [∗/A] is a group stack, and a stack over X that is étale locally isomorphic to [∗/A]×X is
an A-gerbe on X if the gluing maps are [∗/A]-equivariant.

From now on, we will only be concerned with Gm- and μr-gerbes.

Example 2.11. Consider the stack over X, which over T →X is determined by the groupoid
of line bundles on L on T . This is a Gm-gerbe on X and it is, in fact, the trivial Gm-gerbe.
Indeed, it admits a global section, the trivial line bundle, and two line bundles are locally
isomorphic. Moreover, there is a canonical map Gm →Aut(L) that provides the Gm-gerbe
structure.

Example 2.12. A typical example of a gerbe on X (which we will not need) comes from the root
stack construction: if L is a line bundle on X, consider the moduli stack whose groupoid over
T →X consists of a line bundle M on T together with an isomorphism φ :M r ∼=L|T . This is a
μr-gerbe on X.

Example 2.13. Let Y →X be a degree r Brauer–Severi variety. We consider the stack of locally
free sheaves trivializing Y : for T →X we consider the groupoid of locally free sheaves E on T
together with an isomorphism φ : Y |T ∼= P(E∨) of T -schemes. We claim this is a Gm-gerbe on X.
Indeed, this stack admits étale local sections, since Y is étale locally trivial. Secondly, if E and
F both trivialize Y , then we consider the local situation where they are both free, and now we
need to produce an isomorphism. The composition P(E∨)∼= Y ∼= P(F∨) is given by an element
of PGLr [MFK02, Sect. 0.5], so it is locally an equivalence class of matrices. Any matrix in this
class defines an isomorphism of E and F commuting with φ.

If M is an automorphism of (E, φ), then it has to be a scalar: this can be checked locally,
where E is free, and the matrix associated with M acts as its representative in PGLr on P(E∨);
thus, this action is trivial if and onlyM is a non-zero scalar. This gives us a natural isomorphism
Gm →Aut(E, φ).

There is a variant on this example, where we also fix an isomorphism ν : detE ∼=OT . This
restricts the number of automorphisms of the triple (E, φ, ν), and the result is a μr-gerbe on X.
Thus, associated with any degree r Brauer–Severi variety over X is a Gm-gerbe and a μr-gerbe
on X.

Example 2.14. The same example works for degree r Azumaya algebras on X: one can consider
the stack of locally free sheaves E such that End(E∨) trivializes the Azumaya algebra A, both
with and without trivializing the determinant. In this case the Skolem–Noether theorem ensures

9We will use the term ‘isomorphism’ for what is actually an equivalence of stacks.
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that we can use the group PGLr in the same way as above. In fact, by the result of Proposition 2.5
and Example 2.6, a locally free sheaf E trivializes A if and only if it trivializes the associated
Brauer–Severi variety, so the moduli stacks of these examples are isomorphic.

By the previous examples, every Brauer–Severi variety Y on X of degree r defines classes
α(Y )∈H2(X,Gm) and w(Y )∈H2(X, μr). We refer to α(Y ) as the Brauer class of Y and to
w(Y ) as the Stiefel–Whitney class of Y . Similarly, every Azumaya algebra A on X of degree r
determines classes α(A)∈H2(X,Gm) and w(A)∈H2(X, μr). The assignments Y �→w(Y ) and
Y �→ α(Y ) fit in the framework of non-abelian cohomology [Gir71]. This theory defines groups
H1(X,G) and H2(X,G) for non-abelian groups G in the étale topology, and defines connect-
ing homomorphisms between these groups. The definitions of the connecting homomorphisms
induced by the sequences

1→ μr → SLr →PGLr → 1 and 1→Gm →GLr →PGLr → 1 (3)

are precisely w and α. Furthermore, these maps are compatible in the sense that the following
diagram commutes:

H1(X,PGLr)
w

α

H2(X,µr)

o

H2(X,Gm)

(4)

where o is induced by the inclusion μr ≤Gm. This can be seen by either using that there is a
morphism between the short exact sequences from (3), or, alternatively, by explicitly comparing
the gerbes. Note that the vertical arrow o in the diagram is part of the long exact sequences
induced by the Kummer sequence

· · · →H1(X,Gm)→H2(X, μr)→H2(X,Gm)
(·)r→ H2(X,Gm)→ · · · . (5)

Since H1(X,Gm)∼=Pic(X), we refer to the first map as c1 :H
1(X,Gm)→H2(X, μr). In the

trivial case we get [Yos06, Lemma 1.2], [HS03]

w(P(E∨)) = [c1(E) mod r]∈H2(X, μr). (6)

By the comparison theorem [Mil80], the étale cohomology group H2(X, μr) equals the corre-
sponding singular cohomology group with respect to the complex analytic topology on X, which
we sometimes denote by H2(X,Z/rZ). The above factorization (4) also reveals that the Brauer
class of a degree r Azumaya algebra on X is an r-torsion element of H2(X,Gm).

In the next section, we assume H1(X,Z)tor = 0 (in the complex analytic topology). Then, by
Lemma 3.1, we have

H2(X, μr)∼=H2(X,Z)/rH2(X,Z).

Using the identification H1(X,Gm)∼=Pic(X), the map H1(X,Gm)→H2(X, μr) factors via the
usual first Chern class map

Pic(X) ��

c1
��

H2(X,Z)/rH2(X,Z)

H2(X,Z) ∩ H1,1(X),

��
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where the diagonal arrow is the quotient map and the vertical arrow is surjective by the Lefschetz
theorem on (1, 1)-classes. By the Kummer sequence (5), the μr-gerbes which are trivial as Gm-
gerbes are precisely the elements of

(H2(X,Z)∩H1,1(X))/rH2(X,Z).

The cohomology class α(Y )∈H2(X,Gm) determines whether Y is trivial (in the sense of
Example 2.6), because α(Y ) = 0 if and only if the gerbe from Example 2.13 has a global section
(Proposition 2.10), but this precisely happens when a trivialising locally free sheaf exists on X.
This statement can also be seen from the previous paragraph combined with [Yos06, Lemma
1.4].

10

It is not possible to recover a Brauer–Severi variety from its class in H2(X,Gm); indeed,
all Brauer–Severi varieties of the form P(E∨) for some locally free sheaf E have trivial class.
Thus, taking the associated class is not ‘injective’. Instead, we have the following ’surjectivity‘
results.

Theorem 2.15. (de Jong). Any torsion class in H2(X,Gm) is equal to α(Y ) for some Brauer–
Severi variety Y →X.

Theorem 2.16. (de Jong, Lieblich). Suppose dim(X) = 2. Any class in H2(X, μr) is equal to
w(Y ) for some degree r Brauer–Severi variety Y →X.

Theorem 2.15 holds far more generally. We only need X to admit an ample line bundle, for
example, ifX is quasi-projective over an affine scheme (see [dJo]). On the contrary, Theorem 2.16
is special in the sense that it does not hold for smooth varieties of arbitrary dimension [AW14].
It is a consequence of the period-index theorem proved by de Jong [dJo04]. See [Lie08, Corollary
4.2.2.4] on how to deduce this specific form of the theorem.

2.2 Twisted sheaves

We review the theory of twisted sheaves from different viewpoints. Recall the sheaf G from
Lemma 2.4.

Definition 2.17. Let π : Y →X be a BrauerSeveri variety. A Y -sheaf is a coherent sheaf F on
Y such that the counit π∗π∗(F ⊗G∨)→ F ⊗G∨ is an isomorphism. The category of Y -sheaves
is denoted Coh(X, Y ). Let A be an Azumaya algebra on X. An A-module is a left module
over A such that the underlying OX -module is coherent. The category of A-modules is denoted
Coh(X,A).

Proposition 2.18. (Reede). Let π : Y →X be a Brauer–Severi variety over X with corre-
sponding Azumaya algebra A (Proposition 2.5). Then there is a canonical equivalence between
Coh(X,A) and Coh(X, Y ).

Proof. Let us describe the equivalence. If F is a Y -sheaf, then Hom(G, F ) is a End(G∨)-module.
Hence π∗(Hom(G, F )) is a π∗End(G∨) module, but the latter is identified with A. On the other
hand, if F is a π∗End(G∨)-module, then π∗F is a π∗π∗End(G∨)∼= End(G∨)-module (Lemma 2.4).
Hence it is a right End(G)-module. Then π∗F ⊗End(G) G is the corresponding Y -sheaf. Reede
checks that this is an equivalence [Ree18, Lemma 1.10]. �

10We note, in passing, that w(Y ) = 0 if and only if Y ∼= P(E∨) for a locally free sheaf E on X with det(E)∼=OX .
However, triviality of w(Y ) does not play a role in this paper.
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The category of Y -sheaves only depends on α(Y )∈H2(X,Gm). We review the theory of
coherent sheaves on gerbes and explain how to recover Coh(X,A), Coh(X, Y ). The following
result can be found in work of Lieblich [Lie07, Propositions 2.1.1.13, 2.2.1.6].

Proposition 2.19. (Lieblich). Let π : G →X be a Gm-gerbe. Every quasi-coherent sheaf F on
G admits a canonical Gm-action. Hence, it admits a functorial weight decomposition

F =
⊕
n∈Z

Fn.

In fact, the entire category of quasi-coherent sheaves admits a weight decomposition

QCoh(G) =
⊕
n∈Z

QCoh(G)n.

Furthermore, the pull-back π∗ : QCoh(X)→QCoh(G) induces an equivalence between QCoh(X)
and QCoh(G)0, these are the sheaves on which the action is trivial. For a μr-gerbe the same
result holds, except that the grading is now over Z/rZ.

Tensor product and Hom respects this decomposition, in the sense that if F ∈QCoh(G)n and
F ′ ∈QCoh(G)m, then F ⊗ F ′ ∈QCoh(G)n+m and Hom(F, F ′)∈QCoh(G)−n+m. In particular, if
F is of pure weight, then Hom(F, F ) is of weight zero and thus descends to X.

Definition 2.20. If π : G →X is a Gm-gerbe, we define the G-twisted sheaves as the coher-
ent objects of QCoh(G)1. We denote the category of G-twisted sheaves by Coh(G)1. We make
analogous definitions for a μr-gerbe on X, except now 1∈Z/rZ.

Let A be an Azumaya algebra on X mapping to a Gm-gerbe π : G →X. Then there exists
a rank r locally free sheaf E on G such that End(E∨)∼=A|G . One can verify that E is in fact
a twisted sheaf [Lie07, Corollary 2.2.2.2]. If F is any G-twisted sheaf, then Hom(E, F ) is again
untwisted, i.e. it is (uniquely) in the image of π∗ by Proposition 2.19. Note that Hom(E, F )
is a right End(E)-module and therefore a left End(E)op ∼= End(E∨)-module. The following is a
consequence of Morita equivalence [Cal00, Lie07].

Proposition 2.21. Let A be an Azumaya algebra on X mapping to a Gm-gerbe G →X. The
assignment F �→ π∗Hom(E, F ) gives an equivalence between Coh(G)1 and Coh(X,A).

This discussion also works for the associated μr-gerbe, instead of the Gm-gerbe.
In summary, for a Brauer–Severi variety Y →X with corresponding Azumaya algebra A on

X with corresponding Gm-gerbe G, we have the three equivalent categories

Coh(X, Y ), Coh(X,A), Coh(G)1,
which in particular shows that (up to equivalence) the category only depends on the gerbe G.
In the next section, we view the Gm-gerbe G as a Brauer class and establish in a different
way that Coh(X,A) only depends on this Brauer class (Example 2.25). In view of this dis-
cussion, it seems reasonable to call any of these equivalent categories the category of twisted
sheaves.

2.3 Brauer group

The material of the previous sections is closely related to the Brauer group. We review its most
important properties.
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Definition 2.22. Define two Azumaya algebras A and A′ on X to be Brauer equivalent if there
exist locally free sheaves E and E′ of finite rank on X such that A⊗End(E)∼=A′ ⊗ End(E′).
The resulting equivalence classes form a group, where [A] + [A′] = [A⊗A′] and the inverse of
[A] is [Aop]. This group is called the Brauer group Br(X) of X. For any r > 1, we have a natural
homomorphism H1(X,PGLr)→Br(X).

The fact that the inverse is given by the opposite algebra follows from an alternative definition
of Azumaya algebras as coherent OX -algebras A, which are locally free, and for which

A⊗Aop →End(A), a⊗ a′ �→ (x �→ axa′) (7)

is an isomorphism.

Proposition 2.23. The map H1(X,PGLr)→H2(X,Gm) descends to an injective homo-
morphism Br(X)→H2(X,Gm). Its image is exactly the collection of torsion classes in
H2(X,Gm).

Proof. It suffices to show that for any Azumaya algebra A on X and locally free sheaf E of
finite rank on X, the Gm-gerbes associated with A and A⊗End(E) are equivalent. This is done
as follows: if a locally free sheaf E′ on a scheme T →X trivializes A, then E′ ⊗E trivializes
A⊗End(E). This defines a Gm-equivariant morphism between gerbes, which is therefore an
isomorphism (Proposition 2.10).

By (3), the kernel of the map α :H1(X,PGLr)→H2(X,Gm) is the image of H1(X,GLr)→
H1(X,PGLr), which precisely consists of trivial Azumaya algebras A∼= End(E) on X, from
which the injectivity statement follows.

By (4), any element in the image of α is torsion. Moreover, all torsion elements of H2(X,Gm)
are in the image by Theorem 2.15. �

Remark 2.24. For a Noetherian scheme Z, the torsion part of H2(Z,Gm) is also known as the
cohomological Brauer group of Z. For a regular Noetherian scheme Z, H2(Z,Gm) is a torsion
group [Mil80, Corollary IV.2.6], [ Lie08, Corollary 3.1.3.4], so in our setting, Br(X)∼=H2(X,Gm).

From Proposition 2.21 one can see that the category of left A-modules only depends on the
Brauer class of A. One can also see this explicitly as follows.

Example 2.25. For an Azumaya algebra A on X and locally free sheaf E of finite rank on X, we
want to show that A and A⊗End(E) have equivalent categories of left modules. This follows
from Morita theory [Lam99, §18D]. Indeed, A⊗End(E) is a (A,A⊗End(E)) bimodule, which
is locally free both as A- and A⊗End(E)-module. Explicitly, the functor

Coh(X,A)→Coh(X,A⊗End(E)), F �→ F ⊗E,

is an equivalence.

One might wonder if the converse is true: if A and A′ are such that their categories of modules
are equivalent, are they also Brauer equivalent? Căldăraru’s conjecture, now a theorem [Ant16],
says that this is almost the case.

Theorem 2.26. (Antieau). Let X and Y be quasi-compact and quasi-separated schemes over
a commutative ring R. Suppose that AX and AY are Azumaya algebras on X, respectively Y ,
such that there is an R-linear equivalence between QCoh(AX) and QCoh(AY ). Then there is an
isomorphism ϕ :X→ Y of R-schemes such that ϕ∗AY is Brauer equivalent to AX .
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3. Moduli of twisted sheaves

3.1 Chern characters

From now on we will in addition assume that dim(X) = 2, i.e.X is a surface, and thatH1(X,Z) is
torsion free (in the complex analytic topology). By Poincaré duality and the universal coefficient
theorem, this implies that all groups Hi(X,Z), H

i(X,Z) are torsion free.
In the next lemma, we use the assumption that H1(X,Z) is torsion free to construct lifts of

Stiefel–Whitney classes.

Lemma 3.1. There is an isomorphism H2(X,Z)/rH2(X,Z)∼=H2(X, μr) induced by the long
exact sequence associated with the short exact sequence

0→Z
r·→Z→Z/rZ→ 0,

where Z/rZ∼= μr. In other words, every w ∈H2(X, μr) is represented by a ξ ∈H2(X,Z), which
is unique up to translation by multiples of r.

Proof. By using the long exact sequence, it suffices to show that H2(X, μr)→H3(X,Z) is zero.
Since the first group is torsion, it suffices to prove that H3(X,Z) is torsion free. This follows
from Poincaré duality and the assumption that H1(X,Z) is torsion free. �

Another important consequence of the assumption H1(X,Z)tor = 0 is that for any Brauer–
Severi variety π : Y →X, the map

π∗ :H∗(X,Z) ↪→H∗(Y,Z)

is an inclusion [Yos06, Lemma 1.6].
The lifts of Lemma 3.1 are used to define the Chern character of twisted sheaves. This defini-

tion is due to Yoshioka [Yos06]. On surfaces this gives the correct answer (due to Proposition 3.3,
and the discussion at the end of this section), but for higher-dimensional varieties another
definition is required.

Definition 3.2. If A is an Azumaya algebra on a surface X, choose a representing element
ξ ∈H2(X,Z) for w(A)∈H2(X, μr) (Lemma 3.1). If F is a left A-module, we define

chA(F ) :=
ch(F )√
ch(A)

and chξA(F ) := eξ/rchA(F ).

Here on the right we take the Chern character of coherent OX -modules. Equivalently (via
Proposition 2.18), if π : Y →X is the Brauer–Severi variety corresponding to A= π∗(End(G∨))
and F is a Y -sheaf, we define

chG(F ) :=
ch(π∗(F ⊗G∨))√
ch(π∗(G⊗G∨))

, chξG(F ) := eξ/rchG(F ),

where G is the sheaf defined in Lemma 2.4. We view these Chern characters as elements of
H∗(X,Q). The component of chG(F ) in H

0(X,Z) equals rk(F ).

We refer to the factor eξ/r as the Huybrechts–Stellari twist introduced in [HS05]. The class
ξ/r ∈H2(X,Q) is called a rational B-field . The Huybrechts–Stellari twist has the desirable

feature that chξA(F ) has the following integrality property shown in [Yos06] for K3 surfaces (but
it holds for arbitrary surfaces with H1(X,Z) torsion free [JK21]).
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Proposition 3.3. Let A be an Azumaya algebra on a surface X. For any left A-module F ,
choose a representing element ξ for w(A)∈H2(X, μr) and write

chξA(F ) = (s, c1,
1
2c

2
1 − c2)∈H∗(X,Q).

Then c1 ∈H2(X,Z) and c2 ∈H4(X,Z)∼=Z.

We wish to provide more motivation for Definition 3.2. Suppose that A= End(E∨) is a trivial
Azumaya algebra. Then every left A-module M is of the form F ⊗E∨ for F a coherent sheaf on
X by Example 2.25. One might expect that chξA(M) = ch(F ). And indeed, this can be verified:
on a surface X, we have

ch(E) · e−2c1(E)/r = ch(E∨). (8)

Keeping in mind that ξ = c1(E) represents w, see (6), we can rewrite this as

ch(F ) =
ch(F ⊗E∨)√

ch(E∨)2
=

ch(F ⊗E∨)√
ch(End(E∨))e−2ξ/r

= chξA(M).

There is an alternative perspective. We can view our surface as a complex manifold and
forget the complex structure; what remains is a topological space. There is a notion of topological
Azumaya algebras on this space. Their classes take values in the topological Brauer group, which
is the torsion part of H3(X,Z), which is zero in our case because we assume H1(X,Z)tor = 0.
Hence, any topological Azumaya algebra is trivialized by a topological vector bundle, and this
vector bundle is unique up to tensoring by a topological line bundle (that is, a class in H2(X,Z)).
One can use this to define Chern classes, and a similar calculation shows that they are the same
as the previous definition. For details on topological Azumaya algebras, we refer the reader to
[AW13]. Similar ideas to what we have described also appear in [Hei05, Yos06].

3.2 Moduli spaces

Let (X,H) be a smooth polarized surface and suppose H1(X,Z)tor = 0. Let π : Y →X be a
Brauer–Severi variety of degree r with corresponding Azumaya algebra A. On the one hand,
one can consider moduli spaces of stable Y -sheaves on X constructed by Yoshioka [Yos06]. On
the other hand, one can consider moduli spaces of generically simple torsion free left A-modules
constructed by Hoffmann and Stuhler [HS05]. We recall the main results on these moduli spaces.
Since Coh(X, Y ) and Coh(X,A) are equivalent, one expects these moduli spaces to be isomorphic
as was shown by Reede [Ree18].

We first recall Yoshioka’s result [Yos06]. Let G be the unique (up to scaling) non-trivial
extension of TY/X by OY of Lemma 2.4. For a Y -sheaf F , its twisted Hilbert polynomial is defined
by [Yos06]

χ(G, F ⊗ π∗OX(mH)) = χ(X, π∗(F ⊗G∨)(mH)).

Suppose F is torsion free. Then the above polynomial has degree 2 and we denote its leading
term by 1

2a
G
2 (F )m

2. One defines F as semistable (with respect to H) if

χ(π∗(F ′ ⊗G∨)(mH))

aG2 (F
′)

≤ χ(π∗(F ⊗G∨)(mH))

aG2 (F )
,

for all Y -subsheaves 0 �= F ′ � F . Stability is defined analogously with ≤ replaced by <.
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Definition 3.4. For any choice of Chern character ch = (s, c1,
1
2c

2
1 − c2)∈H∗(X,Q), Yoshioka

proves there exists a coarse moduli space MH,ss
Y (ch) parametrizing S-equivalence classes

of semistable Y -sheaves F with chG(F ) = ch. Moreover, MH,ss
Y (ch) is a projective scheme.

Furthermore,MH,ss
Y (ch) contains an open subschemeMH

Y (ch) parametrizing isomorphism classes
of stable Y -sheaves F on X with chG(F ) = ch.

We sometimes prefer fixing Chern classes instead of Chern characters, in which case we
write MH,ss

Y (s, c1, c2) and MH
Y (s, c1, c2). Representing the Stiefel–Whitney class w(Y ) by ξ ∈

H2(X, μr), we sometimes prefer to fix chξG(F ) = ch= (s, c1,
1
2c

2
1 − c2), in which case we denote

the corresponding moduli spaces by

MH,ss
Y,ξ/r(ch), MH

Y,ξ/r(ch), MH,ss
Y,ξ/r(s, c1, c2), MH

Y,ξ/r(s, c1, c2).

Then we have s∈Z, c1 ∈H2(X,Z), and c2 ∈Z (Proposition 3.3).

Remark 3.5. Suppose we take s equal to the order of α(Y )∈Br(X). Then s is the minimal rank
among all (coherent) Y -sheaves of positive rank [Yos06, Lemma 3.2, Remark 3.1]. This implies
all rank s torsion free Y -sheaves are automatically stable and semistable! This is a crucial feature
of the theory of twisted sheaves.

We now recall Hoffmann and Stuhler’s result. They consider left A-modules F which are
torsion free (as OX -module) and generically simple, i.e. over the generic point η ∈X the Aη-
module Fη is simple. By Wedderburn’s theorem, over the generic point Aη

∼=Mn(D) for some
division algebra D over C(X) and some n∈Z>0, and simplicity means Fη

∼=D⊕n (with Aη-
module structure induced by matrix multiplication). One crucial observation is that the algebra
of A-endomorphisms EndA(F ) is a finite-dimensional C-algebra, which is moreover a division
ring because we have an embedding [HS05]

EndA(F ) ↪→EndAη
(Fη)∼=Dop,

hence EndA(F ) =C. Therefore, we do not have non-trivial automorphisms. In fact, no notion of
stability is required.

Definition 3.6. For any choice of Chern character ch = (s, c1,
1
2c

2
1 − c2)∈H∗(X,Q), Hoffmann

and Stuhler prove there exists a coarse moduli space MA(ch) parametrizing isomorphism classes
of generically simple torsion free left A-modules F with chA(F ) = ch. Moreover, MA(ch) is a
projective scheme.

The property of generic simplicity implies s=deg(D) :=
√

dimC(X)(D) (and in particular

F has rank ns2 as OX -module). Therefore, we may suppress rank s from the notation. Also
recall that A has degree r, so r, n, s are related by r= ns. We sometimes prefer fixing Chern
classes instead of Chern characters, in which case we write MA(c1, c2). Moreover, sometimes

we fix the twisted Chern character chξA(F ) = ch= (s, c1,
1
2c

2
1 − c2), in which case we denote the

corresponding moduli space by

MA,ξ/r(ch), MA,ξ/r(c1, c2).

In the setting of Azumaya algebras, one often only considers the case n= 1, i.e. Aη
∼=D. The

reason is that one can replace A by a Brauer equivalent Azumaya algebra with this property
[Ree18, Remark 2.1] and replacing A by a Brauer equivalent Azumaya algebra does not change
the category of left modules (Example 2.25).
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Then the degree r of the Azumaya algebra A is equal to its index which is defined as the
degree of D. By the period-index theorem [dJo04], this is also the period of A which is defined
as the order of the Brauer class α(A).

11

For n= 1, we have the following result.

Theorem 3.7. (Reede). The equivalence of categories of Proposition 2.18 induces an isomor-
phism of moduli spaces

MH
Y (r, c1, c2)∼=MA(c1, c2).

In particular, all rank r torsion free Y -sheaves are automatically stable and the space
MH

Y (r, c1, c2) is projective and independent of H.

In fact, Reede identifies the moduli functors, not just the coarse spaces.
Still working under the assumption Aη

∼=D, Hoffmann and Stuhler consider the locus

M lf
A(c1, c2)⊂MA(c1, c2)

of locally free A-modules of rank 1 (as A-modules). Note that Pic(X) acts on the union of these
moduli spaces over all c1, c2 by F �→ F ⊗L.

Proposition 3.8. (Hoffmann–Stuhler). The map F →EndA(F )op gives a bijection between the
closed points of ⊔

c1,c2

M lf
A(c1, c2)

/
Pic(X)

and the set of isomorphism classes of Azumaya algebras B on X satisfying Bη
∼=D. Under this

bijection c2(B) = 2rc2 − (r− 1)c21.

Proof. This is [HS05, Proposition 4.1], except for the calculation of c2(B) with B= EndA(F )op
where F is a locally free A-modules of rank 1 (as A-module). The natural map

A⊗OX
EndA(F )→End(F )

is an isomorphism. Since c1(A) = 0, we obtain

ch(B) = ch(EndA(F )) = ch(End(F ))
ch(A)

=
ch(F )√
ch(A)

(
ch(F )√
ch(A)

)∨
= r2 + (r− 1)c21 − 2rc2, (9)

from which the result follows. �

Corollary 3.9. If MA(c1, c2) �=∅, then there exists an Azumaya algebra B on X satisfying
Bη

∼=D and

c2(B)≤ 2rc2 − (r− 1)c21.

Proof. Taking an element F in MA(c1, c2), its double dual (as OX -module) F ∗∗ =
Hom(Hom(F,OX),OX) has a natural left A-module structure and is locally free (as OX -
module). Consider the short exact sequence of OX -modules

0→ F → F ∗∗ →Q→ 0,

11In particular, this means w(Y ) is an optimal μr-gerbe [Lie07, Definition 2.2.5.2].
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induced by the natural inclusion F ↪→ F ∗∗. Then Q is 0-dimensional, so rk(F ∗∗) = rk(F ) =
r2 (implying F ∗∗ is locally free of rank 1 as A-module by Proposition 2.21), c1(F

∗∗) =
c1(F ), and c2(F

∗∗) = c2(F ) + c2(Q)≤ c2(F ). Taking B= EndA(F ∗∗)op, the result follows from
Proposition 3.8. �

Remark 3.10. In the previous proposition and corollary, we can also replace M lf
A(c1, c2) by

M lf
A,ξ/r(c1, c2), i.e. we fix Chern character twisted by the B-field, and obtain the same conclusions.

In § 5.3, we present a method to detect the condition ‘MA(c1, c2) �=∅’ by showing that certain
intersection numbers on the moduli space are non-zero.

Remark 3.11. Suppose H1(X,Z) = 0. Lieblich has shown that there exists a (sufficiently large)
second Chern class c2 ∈Q such that M lf

A(0, c2 + k) �=∅ for all k ∈Z≥0 [Lie09, Theormm 6.2.4].
More precisely, let G :=w(A)∈H2(X, μr) be the optimal μr-gerbe corresponding to A and
let π : G →X be the map to the coarse moduli space. For this remark, fix a Chern character
chA := (r, c1,

1
2c

2
1 − c2) in the Chow group A∗(X)Q. Moreover, let π∗chA =: ch′ = (r, c′1,

1
2c

′2
1 − c′2)

in A∗(G)Q. Denote by TwG(r, c′1, c′2) Lieblich’s moduli stack of torsion free twisted sheaves F on
G with ch(F ) = ch′. Recall that A|G ∼= End(E∨) for some locally free twisted sheaf E of rank r on
G, which we can choose to satisfy c1(E) = 0 (Example 2.14). It is not hard to see that the equiv-
alence of Proposition 2.21 induces a bijection between (isomorphism classes of) the C-valued
points of TwG(r, c′1, c′2) and MA(c1, c2).

12

The bijection also preserves locally free objects.
Now take c1 = c′1 = 0. By the existence of E, at least one of the stacks TwG(r, 0, c′2) has

a locally free object. Moreover, Lieblich shows that if Δ′ := 2rc′2 − (r− 1)c′21 = r−1(2rc2 − (r−
1)c21) = 2rc′2 = 2c2 is sufficiently large, then TwG(r, 0, c′2 + k/r) has a locally free object for all k ∈
Z≥0 [Lie09, Theoremm 6.2.4].

13

Hence, there exists a Chern class c2 such thatM lf
A(0, c2 + k) �=∅

for all k ∈Z≥0. However, there is no a priori control over the value of c2. Instead, our goal is to
find values of c2, with explicit lower and upper bound, for which MA(0, c2) �=∅.

4. Invariants of moduli of twisted sheaves

4.1 Obstruction theory

Let (X,H) be a smooth polarized surface satisfying H1(X,Z) = 0. Let Y →X be a Brauer–
Severi variety of degree r and consider the moduli spacesM :=MH

Y (ch) of the previous section.
14

Denote by πM : Y ×M →M the projection. Although a universal sheaf E may not exist globally
on Y ×M , the complex

RHomπM
(E , E) :=RπM∗RHom(E , E)

exists globally on Y ×M [Cal00, HL10]. Put differently, E exists as a twisted sheaf on Y ×M .
Denote the truncated cotangent complex of M by LM = τ≥−1LM . The following result is well
known in the untwisted case [HT09] and shown in the twisted case in [JK21].

12Undoubtedly this bijection can be enhanced to an isomorphism between the coarse moduli spaces, but we do
not need this.
13Beware of the fact that Lieblich works with a normalized degree map which is r times the ordinary degree map
A∗(G)Q →Q [Lie09, §6.1.5].
14In this subsection, and the next one, we have ’switched off’ the B-field, i.e. we have not included the Huybrechts–
Stellari twist for the Chern character.
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Proposition 4.1. Fix ch = (s, c1,
1
2c

2
1 − c2)∈H∗(X,Q). Then the moduli space M :=MH

Y (ch)
has a perfect obstruction theory

E := (T vir
M )∨ := (RHomπM

(E , E)0[1])∨ →LM

of virtual dimension

vd(ch) := vd(s, c1, c2) := 2sc2 − (s− 1)c21 − (s2 − 1)χ(OX). (10)

By the work of Behrend and Fantechi [BF97], we therefore obtain a virtual fundamental class
of degree vd(s, c1, c2) in the Chow group of M

[M ]vir ∈Avd(s,c1,c2)(M).

We provide the following two additional perspectives on this obstruction theory.

Remark 4.2. Let G →X be the μr-gerbe corresponding to w(Y )∈H2(X, μr). Then the analogue
of this proposition was shown for the moduli stack Tws

G(r, 0, c2) of twisted sheaves on G by
Lieblich [Lie09, Proposition 6.5.1.1]. Another way to view this proposition is as follows. Let M
be the derived stack of simple sheaves with fixed determinant on Y . Then its classical truncation
M cl has an obstruction theory

E :=LM |Mcl = (RHomπMcl (E , E)0[1])∨ →LMcl .

Yoshioka proved that the locus of Y -sheaves is open in M cl [Yos06, Lemma 1.6.5], so we can
restrict E→LMcl to this open locus (alhough we are now on a stack, which is a Gm-gerbe over
the moduli scheme in Proposition 4.1).

We are interested in the relative situation. Suppose f :X →B is a smooth projective mor-
phism of relative dimension 2 with connected fibres over a smooth connected variety B. We
assume that one fibre (and hence all fibres) Xb satisfies H1(Xb,Z) = 0. Suppose π :Y →X is a
smooth projective morphism of relative dimension r− 1 such that the fibres over closed points
b∈B are Brauer–Severi varieties Yb →Xb. Moreover, we denote by Gb the unique (up to scaling)
non-trivial extension of TYb/Xb

by OYb
(Lemma 2.4).

Consider the Hodge bundles (with respect to the Zariski topology)

H2p
dR :=H2p

dR(X/B) :=R2pf∗Ω•
X/B,

where Ω•
X/B is the algebraic de Rham complex. Since the family X →B is fixed, we suppress it

from the notation. Recall that Hodge bundles behave well with respect to base change and the
fibre of H2p

dR over a closed point b∈B is

H2p(Xb,Ω
•
Xb
)∼=H2p(Xb,C),

where on the right-hand side, we consider Xb with the complex analytic topology. We fix a flat
section with respect to the Gauß–Manin connection

ṽ= (ṽ0, ṽ1, ṽ2)∈
2⊕

p=0

Γ(B,H2p
dR).

Fix a family of polarizations H on X . Denote by

MY/B :=MH
Y/B(ṽ)

the moduli space parametrizing Hb-stable Yb-sheaves F with Chern character chGb
(F ) = ṽb, for

some closed point b∈B. This is the relative version over B of the moduli spaces constructed by
Yoshioka [Yos06]. Note that for any closed point b∈B, we have a Cartesian diagram
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Mb
� � ��

��

MY/B

��

{b} � � �� B

where Mb :=MHb

Yb
(ṽb).

Remark 4.3. In order for these moduli spaces to be non-empty, we must have

ṽb ∈
2⊕

p=0

Hp,p(Xb), (11)

for some closed point b∈B. Suppose B is quasi-projective. Then Deligne’s invariant cycle
theorem implies that (11) holds for all closed points b∈B [Cat14, Proposition 11.3.5].

Remark 4.4. Note that we do not fix a family of B-fields. Such a family would be a flat section
ξ̃ ∈ Γ(B,H2

dR) such that ξ̃b is integral for all b∈B. We are typically interested in families where

the class [ξ̃b]∈H2(Xb, μr) has non-trivial Brauer class for some b∈B and trivial Brauer class for

another b∈B. Recall that [ξ̃b]∈H2(Xb, μr) has trivial Brauer class if and only if ξ̃b has Hodge

type (1, 1) modulo rH2(Xb,Z) (§2.1). If in fact ξ̃b itself has type (1, 1) for some b∈B (and B is
quasi-projective), then it has type (1, 1) for all b∈B by Deligne’s invariant cycle theorem, which
is too restrictive for our purposes.

By [HT09, Theorem 4.1], we have a relative obstruction theory

φ :EY/B →LMY/B/B.

For each closed point b∈B, consider the inclusion jb :Xb ↪→X , then we obtain an induced map

φb :Eb :=Lj∗bEY/B →Lj∗bLMY/B/B →LMb
,

which is the perfect obstruction theory of Proposition 4.1. Since the base B is connected, the
topological number

vd= vd(ṽb)∈Z≥0

does not depend on the closed point b∈B. We obtain a cycle class [HT09, Corollary 4.3]

[MY/B]
vir ∈Avd+dim(B)(MY/B),

such that for all closed points b∈B we have

i!b[MY/B]
vir = [Mb]

vir ∈Avd(Mb), (12)

where i!b :A∗(MY/B)→A∗(Mb) is the refined Gysin pull-back [Ful98] for the Cartesian diagram
(4.1).

4.2 The SLr and PGLr generating function

Let R be a commutative Q-algebra e.g. Q or a polynomial algebra over Q. Fix v ∈Z≥0, and
a= (a1, . . . , aN )∈ {1, 2}N for some N ∈Z≥0. Let (α0, α1, . . . , αN ) be a list of variables and
let r be a further variable. Let Pv,a be a formal power series, with coefficients in R(r), in the
following formal symbols:
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πM∗
(
π∗Xαi ∩ chk(E ⊗ det(E)− 1

r )
)
, πM∗

(
π∗Xαic1(X)∩ chk(E ⊗ det(E)− 1

r )
)
,

πM∗
(
π∗Xαic2(X)∩ chk(E ⊗ det(E)− 1

r )
)
, πM∗

(
π∗Xαic1(X)2 ∩ chk(E ⊗ det(E)− 1

r )
)
,

cj(RHomπM
(E , E)[1]),

where i= 0, . . . , N and k, j ∈Z≥0, and αi, αic1(X), . . . , E are viewed as formal variables. Define
degrees deg cj(·) = j and

deg πM∗
(
π∗Xαi ∩ chk(E ⊗ det(E)− 1

r )
)
= ai + k− 2,

deg πM∗
(
π∗Xαic1(X)∩ chk(E ⊗ det(E)− 1

r )
)
= ai + k− 1,

deg πM∗
(
π∗Xαic2(X)∩ chk(E ⊗ det(E)− 1

r )
)
= ai + k,

deg πM∗
(
π∗Xαic1(X)2 ∩ chk(E ⊗ det(E)− 1

r )
)
= ai + k,

where i= 0, . . . , N and we take a0 := 0. We assume that the formal power series Pv,a has only
finitely many terms in each degree. We refer to Pv,a as a formal insertion. The reader who is
only interested in virtual Euler characteristics can take Pv = cv(RHomπM

(E , E)[1]).
Keeping a, r fixed as above, we now consider a sequence of formal insertions P :=

{Pv,a}v≥0.
15

Let r > 1, let (X,H) be a smooth polarized surface satisfying H1(X,Z) = 0, and
α= (α1, . . . , αN )∈H∗(X,Q)N algebraic classes with deg(αi) = ai for all i= 1, . . . , N .

SLr-invariants.. As in the introduction, denote byM :=MH
X (r, c1, c2) the Gieseker–Maruyama–

Simpson moduli space of rank r Gieseker H-stable sheaves on X with Chern classes c1, c2 [HL10].
Suppose, for the moment, that there exists a universal sheaf E onX ×M such that the line bundle
det(E) has an rth root. We drop these two assumptions in Remark 4.7. Take

v := rk(RHomπM
(E , E)[1]) + χ(OX).

Then the evaluation Pv,a(r, X,α;M, E) is defined as the cohomology class on M obtained from
Pv,a by substituting

16

α0 = 1, α0c1(X) = c1(X), α0c2(X) = c2(X), α0c1(X)2 = c1(X)2, E = E ,
r= r, αi = αi, αic1(X) = αic1(X), αic2(X) = αic2(X), αic1(X)2 = αic1(X)2

for all i= 1, . . . , N , where πX :X ×M →M , πM :X ×M →M denote the projections.

Definition 4.5. Fix a first Chern class c1 ∈H2(X,Z). Suppose there are no rank r strictly
Gieseker H-semistable sheaves on X with first Chern class c1 (this is the case, for example,
when gcd(r, c1H) = 1). We define the SLr generating function of (X,H), c1 associated with
formal insertions P := {Pv,a}v≥0 by

ZSLr,P
(X,H),c1

(q) :=
∑
c2∈Z

q
vd(r,c1,c2)

2r

∫
[MH

X (r,c1,c2)]vir
Pvd(r,c1,c2),a(r, X,α;MH

X (r, c1, c2), E),

where vd(r, c1, c2) was defined in (10).

15In [GKL24, Appendix A], we define a further multiplicative property on sequences of formal insertions, but
multiplicativity does not play a role in this paper.
16There is some redundancy here. Obviously αic2(X) = αic1(X)2 = 0 for all i= 1, . . . , N for degree reasons. We
nonetheless allow these classes for notational convenience.
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PGLr-invariants.. Fix a class w ∈H2(X, μr). By Theorem 2.16, there exists a degree r Brauer–
Severi variety Y →X such that w(Y ) =w. Choose a representative ξ ∈H2(X,Z) of w, i.e. w= [ξ]
(Lemma 3.1). As in § 3.2, denote by M :=MH

Y,ξ/r(r, ξ, c2) Yoshioka’s moduli space of H-stable
Y -sheaves F satisfying

chξG(F ) = (r, ξ, 12ξ
2 − c2).

Note that we have ‘switched on’ the B-field so that c2 ∈Z (Proposition 3.3). Also note that
we choose the rank of F equal to the degree of Y and ‘twisted’ first Chern class equal to ξ.

17

Suppose, for the moment, that there exists a universal sheaf E on Y ×M such that the line
bundle det(E) has an rth root. We drop these two assumptions in Remark 4.7. Take

v := rk(RHomπM
(E , E)[1]) + χ(OX).

The evaluation Pv,a(r, X,α;M, E) is defined as the cohomology class on M obtained from Pv,a

by substituting

E ⊗ det(E)− 1

r = π∗(E ⊗ det(E)− 1

r ),

where π is the base change of π : Y →X to Y ×M , and furthermore by substituting

α0 = 1, α0c1(X) = c1(X), α0c2(X) = c2(X), α0c1(X)2 = c1(X)2,

r= r, αi = αi, αic1(X) = αic1(X), αic2(X) = αic2(X), αic1(X)2 = αic1(X)2,

for all i= 1, . . . , N , where πX :X ×M →M , πM :X ×M →M denote the projections.

Definition 4.6. Fix w ∈H2(X, μr). Choose a degree r Brauer–Severi variety Y →X with
w(Y ) =w and choose a representative ξ ∈H2(X,Z) of w. Suppose there are no rank r strictly

H-semistable Y -sheaves F with chξG(F ) = (r, ξ, 12ξ
2 − c2) for any c2 (this is the case, for exam-

ple, when the Brauer class o(w)∈H2(X,Gm) has order r by Remark 3.5). We define the PGLr

generating function of (X,H), w associated with formal insertions P := {Pv,a}v≥0 by

ZPGLr,P
(X,H),w(q) :=

∑
c2∈Z

q
vd(r,ξ,c2)

2r

∫
[MH

Y,ξ/r(r,ξ,c2)]
vir

Pvd(r,ξ,c2),a(r, X,α;MH
Y,ξ/r(r, ξ, c2), E),

where vd(r, ξ, c2) was defined in (10). As we will see below (Proposition 4.9), this generating
function does not depend on the choice of Y, ξ on the right-hand side, justifying the notation.

Remark 4.7. In each of the above two settings, in general a universal sheaf E on X ×M (respec-
tively Y ×M) may only exist étale locally. However, note that the following complex and sheaf
always exist globally by [Cal00, Theorem 2.2.4] (see also [HL10, §10.2]):

RHomπM
(E , E), E⊗r ⊗ det(E)−1.

Note furthermore that for any class V ∈ 1 +K0(X ×M), we can define an rth root operation
r
√
V ∈K0(X ×M)Q

precisely as in [OT23, Lemma 5.1] (which handles the r= 2 case, but the arguments generalize).
Then we set

ch(E ⊗ (det(E))− 1

r ) := ch
(
r

r

√
1

rr
· E⊗r ⊗ det(E)−1

)
,

and similarly for ch(π∗(E ⊗ (det(E))− 1

r )) for a degree r Brauer–Severi variety π : Y →X.

17In particular, MH
Y,ξ/r(r, ξ, c2) =MH

Y (r, 0, c2 +
1−r
2r

ξ2).
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We will now prove that the generating function ZPGLr,P
(X,H),w(q) does not depend on the choice of

Brauer–Severi variety Y with Stiefel–Whitney class w, or representative ξ of w. Here we will make
crucial use of [Yos06, Lemma 3.5], which establishes the relevant isomorphism of moduli spaces.
We extend this result to also include an isomorphism of virtual tangent bundles. Furthermore,
we prove [Yos06, Lemma 3.5] in a slightly different way, and we will provide more details and
include some intermediate steps that are useful on their own. We first recall Yoshioka’s set-up.

Suppose p1 : Y1 →X and p2 : Y2 →X are two Brauer–Severi varieties with the same Brauer
class o(w(Y1)) = o(w(Y2)) (we will later assume Y1, Y2 have the same degree and w(Y1) =w(Y2)).
Denote the projections Y1 ×X Y2 → Y1 and Y1 ×X Y2 → Y2 by π1 and π2, respectively. Yoshioka
shows that there exists a line bundle L on Y1 ×X Y2 such that the Fourier–Mukai transform

Ξ : Coh(X, Y1)→Coh(X, Y2), Ξ(F ) = π2∗(π∗1F ⊗L)

defines an equivalence of categories [Yos06, Lemma 1.7]. Note that we can always replace L by
L⊗ π∗2p∗2P with P a line bundle on X, something we will do later. We first record the following
identities.

Lemma 4.8. Let F be an Y1-sheaf. The canonical map

π∗2Ξ(F ) = π∗2π2∗(π
∗
1F ⊗L)→ π∗1F ⊗L

is an isomorphism, i.e. π∗1F ⊗L is globally generated relative to π2. If F
′ is another Y1-sheaf

that is locally free, we have that

π∗2(Ξ(F
′)∨ ⊗Ξ(F ))∼= π∗1((F

′)∨ ⊗ F ).

Proof. We can check the first statement étale locally, where the Brauer–Severi varieties are
trivial. Then, the sheaves OY1

(1) and OY2
(1) exist. Yoshioka has already shown that F (−1) is

globally generated relative to p1. Then, by base change, π∗1(F (−1)) is globally generated relative
to π2, and also, π∗1(F (−1))⊗ π∗2Q is globally generated relative to π2 for any line bundle Q.
The claim now follows from the construction of L by Yoshioka: on this étale cover it is given by
OY1

(−1)� (OY2
(1)⊗ p∗2P ) for P any line bundle on X.

The second statement directly follows from the first. �

Proposition 4.9. The generating function ZPGLr,P
(X,H),w(q) does not depend on the choice of degree

r Brauer–Severi variety Y →X with w(Y ) =w or representative ξ ∈H2(X,Z) of w.

Proof. We start with the independence of Y . Using the above notation, let Y1, Y2 be degree
r Brauer–Severi varieties on X with w(Y1) =w(Y2) =w. We will first show that Ξ induces an
isomorphism between moduli spaces, and then that it preserves the obstruction theory and the
generating function.

We first want to prove that Ξ preserves the Chern character, in order to have a chance at
showing it preserves the moduli spaces. Denote by Gi the unique (up to scaling) non-trivial
extension of TYi/X by OYi

(Lemma 2.4). We consider the equality chG1
(F ) = chG2

(Ξ(F )) for

any Y1-sheaf F of positive rank. It suffices to show this equality on Y1 ×X Y2 modulo H≥6,
since Y1 ×X Y2 →X induces an injective map on cohomology. Using the fact that F, G1 are Y1-
sheaves and Ξ(F ), G2 are Y2-sheaves (Definition 2.17), it suffices to prove the following equality
modulo H≥6:

ch
(
(π∗1F ⊗ π∗1G

∨
1 )

⊗2 ⊗ π∗2G2 ⊗ π∗2G
∨
2

)
= ch

(
(π∗2(ΞF )⊗ π∗2G

∨
2 )

⊗2 ⊗ π∗1G1 ⊗ π∗1G
∨
1

)
.
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By Lemma 4.8, this is equivalent to the following equation modulo H≥6:

ch
(
(π∗1F )

⊗2 ⊗ π∗1G
∨
1 ⊗ π∗2(ΞG1)

∨ ⊗ π∗2G2 ⊗ π∗2G
∨
2

)
= ch

(
(π∗1F )

⊗2 ⊗ (π∗2G
∨
2 )

⊗2 ⊗ π∗2(ΞG1)⊗ π∗1G
∨
1

)
,

which can then be rearranged to give

ch((π∗1F )
⊗2 ⊗ π∗1G

∨
1 ⊗ π∗2G

∨
2 ) · π∗2ch(Ξ(G1)

∨ ⊗G2 −G∨
2 ⊗Ξ(G1)) = 0.

Thus, to obtain the Chern character equality, it suffices to show that ch(Ξ(G1)
∨ ⊗G2) = ch(G∨

2 ⊗
Ξ(G1)) moduloH≥6(Y2,Q). Since, ch0 and ch2 already agree, we only have to worry about the c1.
We show that we can replace L by L⊗ π∗2p∗2P for some P ∈Pic(X) such that c1(G2) = c1(Ξ(G1)),
which proves what we want. Changing L by L⊗ π∗2p∗2P replaces Ξ by F �→ p∗2P ⊗Ξ(F ), so, in
particular, it replaces c1(Ξ(G1)) by c1(Ξ(G1)) + rp∗2c1(P ). Thus, in order to find the desired P ,
we have to show that

c1(G2)− c1(Ξ(G1))∈ r · p∗2(H2(X,Z)∩H1,1(X)). (13)

The equality p∗2p2∗(Ξ(G1)⊗G∨
2 )

∼=Ξ(G1)⊗G∨
2 , which holds since Ξ(G1) is a Y2-sheaf, already

implies that r(c1(G2)− c1(Ξ(G1))) lies in r · p∗2(H2(X,Z)∩H1,1(X)), which implies that

c1(G2)− c1(Ξ(G1))∈ p∗2(H2(X,Z)∩H1,1(X)).

To get the factor r, we see that the image of c1(G2)− c1(Ξ(G1)) in H
2(Y2, μr) is p

∗
2w− p∗2w= 0,

by the assumption w(Y1) =w(Y2) =w and [Yos06, Lemma 1.3, 1.8]. Using the explicit form of
H2(Y2,Z) = p∗2H0(X,Z)⊕ p∗2H2(X,Z), we see that (13) is satisfied. This shows that we can pick
Ξ such that it preserves the Chern character. For the rest of the proof, we will use this Ξ.

It is now not hard to show that

χ(X, p1∗(F ⊗G1)(mH))

rk(F )r
=
χ(X, p2∗(Ξ(F )⊗G2)(mH))

rk(F )r
+ c,

where c is a constant that does not depend on F . Therefore Ξ preserves stability. Since Ξ
preserves the Chern character and the stability condition, we obtain an isomorphism

φ :MH
Y1,ξ/r

(r, ξ, c2)∼=MH
Y2,ξ/r

(r, ξ, c2)

for any lift ξ of w and any c2 ∈Z.
Suppose there exists a universal sheaf E1 on Y1 ×M1, where Mi :=MH

Yi,ξ/r
(r, ξ, c2). Then

E2 := φ∗Ξ(E1)
is a universal sheaf on Y2 ×M2, where we denote the base-changed versions of φ,Ξ by the same
symbol. By the second identity of Lemma 4.8, we have

Rp2∗RHom(Ξ(E1),Ξ(E1))∼=Rp1∗RHom(E1, E1).
This readily implies φ∗T vir

M2

∼= T vir
M1

. Note that this reasoning does not require the universal sheaf
E1 to exist globally on Y1 ×M1. This equality, and Siebert’s formula [Sie04, Theorem 4.6], imply
that the virtual classes defined by both moduli problems agree,

18

φ∗[MH
Y2,ξ/r

(r, ξ, c2)]
vir = [MH

Y1,ξ/r
(r, ξ, c2)]

vir. (14)

18We note that the comparison of virtual tangent bundles and fundamental classes (14) was used but not explicitly
carried out in [JK21].
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Note that it is not necessary to establish that

(T vir
M1

)∨
∼=

(φ∗T vir
M2

)∨

LM1

∼=
φ∗LM2

commutes, and we will therefore not do this.
To complete this part of the proof, we should check that the invariants themselves agree.

Lemma 4.8 implies that

π∗2φ
∗(E⊗r

2 ⊗ det(E2)−1)∼= (π∗2φ
∗E2)⊗r ⊗ det(π∗2φ

∗E2)−1)

∼= (π∗2Ξ(E1))⊗r ⊗ det(π∗2Ξ(E1))−1

∼= (π∗1E1 ⊗L)⊗r ⊗ det(π∗1E1 ⊗L)−1

∼= π∗1(E⊗r
1 ⊗ det(E1)−1).

Note that it is crucial that we work with the ‘normalized’ universal sheaves. This gives us that,
for any α∈H∗(X,Q) and k ∈Z, we have

πM1∗
(
π∗Xα∩ chk(p1∗(E1 ⊗ det(E1)− 1

r ))
)
= φ∗πM2∗

(
π∗Xα∩ chk(p2∗(E2 ⊗ det(E2)− 1

r ))
)
,

where πX :Mi ×X→X is the projection. We conclude that, for any a, α as in Definition 4.6,
we have ∫

[MH
Y1,ξ/r(r,ξ,c2)]

vir

Pvd(r,ξ,c2),a(r, X,α;MH
Y1,ξ/r

(r, ξ, c2), E1)

=

∫
[MH

Y2,ξ/r(r,ξ,c2)]
vir

Pvd(r,ξ,c2),a(r, X,α;MH
Y2,ξ/r

(r, ξ, c2), E2).

The second part of the proposition follows [JK21, Proposition 3.1]. Let π : Y →X be a degree
r Brauer–Severi variety with w(Y ) =w and let ξ, ξ′ ∈H2(X,Z) be two representatives of w
(Lemma 3.1). Then ξ′ = ξ + rγ for some γ ∈H2(X,Z). For any Y -sheaf F we have

e
ξ′
r chG(F ) = (r, ξ′, 12ξ

′2 − c′2)

if and only if

e
ξ

r chG(F ) = (r, ξ, 12ξ
2 − c2), c′2 = c2 + (r− 1)γξ + 1

2r(r− 1)γ2.

In particular, MH
Y,ξ′/r(r, ξ

′, c′2) =MH
Y,ξ/r(r, ξ, c2) and vd(r, ξ′, c′2) = vd(r, ξ, c2). Summing over all

c2, c
′
2, the result follows. �

The independence of choice of Y is perhaps not surprising, as this is just a particular model
for the theory of twisted sheaves that we are using (although it is non-trivial that the Chern
classes behave well under the equivalence discussed in Proposition 4.9). The independence of the
choice of ξ is also interesting: here we really need that we are dealing with generating functions
and sum over all c2. A different choice leads to a permutation of the terms of the generating
function.
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We make some observations on the generating functions in Definitions 4.5 and 4.6.

• The SLr generating function is invariant under replacing E by E ⊗L for any line bundle
L on X ×M . Let L be a line bundle on X and suppose −⊗L preserves stability, i.e. it
induces an isomorphism⊔

c2

MH
X (r, c1, c2)→

⊔
c2

MH
X (r, c1 + rc1(L), c2).

This happens, for example, when (i) L is a multiple of H, or (ii) when gcd(r, c1H) = 1 so
that Gieseker stability and μ-stability coincide [HL10, Lemma 1.2.13, 1.2.14]. Then

ZSLr,P
(X,H),c1

(q) = ZSLr,P
(X,H),c1+rc1(L)

(q).

• Suppose α(Y )∈Br(X) has order r > 1. Then stability is automatic by Remark 3.5 and we
write

ZPGLr,P
X,w (q) = ZPGLr,P

(X,H),w(q).

• Many interesting virtual invariants can be obtained from appropriate choices of formal
insertions P by the virtual Hirzebruch–Riemann–Roch theorem [CFK09, FG10]:

– virtual Euler characteristic evir, Hirzebruch genus χvir−y, elliptic genus Ellvir. These were
defined by Fantechi and Göttsche [FG10] and studied in the SLr case in, e.g. [GK18,
GK20b, GKL24];

– Donaldson invariants and K-theoretic Donaldson invariants studied in algebraic geometry
by Göttsche, Nakajima and Yoshioka in the SLr case in [GNY11, GNY08, GNY09];

– virtual cobordism class defined by Shen [She16] and studied in the SLr case in [GK19];
– virtual Segre and Verlinde numbers [GK22, GKW21];
– Virasoro operators [BLM24, vBr23].

We now make a comparison between moduli of sheaves on a trivial Brauer–Severi variety
P(E∨)→X and moduli of sheaves on X.

Proposition 4.10. Let (X,H) be a smooth polarized surface satisfying H1(X,Z) = 0 and
consider a projective bundle π : Y = P(E∨)→X for a rank r vector bundle E on X. Let
w :=w(Y )∈H2(X, μr) and let c1 ∈H2(X,Z) be a (necessarily algebraic) class represent-
ing w. Suppose gcd(r, c1H) = 1. Then there exists an isomorphism between Yoshioka and
Gieseker–Maruyama–Simpson moduli spaces

φ :MH
Y,c1/r

(r, c1, c2)∼=MH
X (r, c1, c2).

Moreover, under this isomorphism we have the following comparison of virtual fundamental
classes and (normalized) universal sheaves:

19

φ∗T vir
MH

X (r,c1,c2)
∼= T vir

MH
Y,c1/r(r,c1,c2)

, φ∗[MH
X (r, c1, c2)]

vir = [MH
Y,c1/r

(r, c1, c2)]
vir,

π∗φ∗
(
(E2)⊗r ⊗ det(E2)−1

)∼= E⊗r
1 ⊗ det(E1)−1,

where π and φ denote the appropriately base-changed morphisms.

Proof. There exists an equivalence of categories [Yos06, Lemma 1.7]

Ξ : Coh(X, Y )→Coh(X), F �→ π∗(F (−1)).

19Recall that the universal sheaves E1, E2 may only exist étale locally, but their normalized versions exists globally
by Remark 4.7.
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We fix the B-field ξ := c1. Using G= π∗E(1) and the projection formula, a direct calculation
shows that for any Y -sheaf F , we have

chξG(F ) = ch(Ξ(F )).

Hence rk(F ) = rk(Ξ(F )). Suppose this rank is positive. Then, using the Hirzebruch–Riemann–
Roch theorem, we find that the reduced Hilbert polynomials are related by

χ(π∗(F ⊗G∨)(mH))

aG2 (F )
=
χ(Ξ(F )(mH))

a2(Ξ(F ))
+
c1(E

∨)H
rH2

m

+
c1(E

∨)c1(X)

2rH2
+

ch2(E
∨)

rH2
+
c1(E

∨)c1(Ξ(F ))
rrk(Ξ(F ))H2

.

We would like to prove the following claim: for any torsion free sheaf F on X, we have

χ(F ′(mH))

a2(F ′)
+

1

rH2

c1(E
∨)c1(F ′)

rk(F ′)
<
χ(F (mH))

a2(F )
+

1

rH2

c1(E
∨)c1(F )

rk(F )
,

for any subsheaf 0 �= F ′ � F , if and only if F is μ-stable [HL10, Definition 1.2.12]. We may replace
P(E∨) by P(E∨ ⊗LN ), where L is an ample line bundle on X and N ∈Z>0. This replaces c1(E

∨)
by Nrc1(L) + c1(E

∨) which is ample for N � 0. In other words, we may assume E is chosen
such that c1(E

∨) is ample. In particular, for any torsion free sheaf F on X and subsheaf F ′ with
rk(F ′) = rk(F ), we have

c1(E
∨)(c1(F )− c1(F

′))≥ 0,

by the Nakai–Moishezon criterion. Assuming gcd(rk(F ), c1(F )H) = 1, the claim then easily
follows. We deduce that Ξ induces an isomorphism of moduli spaces

20

φ :MH
Y,c1/r

(r, c1, c2)
∼=→MH

X (r, c1, c2).

The second part of the proposition is established exactly as in the proof of
Proposition 4.9. �

4.3 Deformation invariance

Let (X,H) be a smooth polarized surface satisfyingH1(X,Z) = 0. We pick a class w ∈H2(X, μr),

a sequence of formal insertions P, and we consider the generating function ZPGLr,P
(X,H),w(q). We will

now show that this generating function is invariant under deformations of (X,H).
Let f :X →B be a smooth projective morphism of relative dimension 2 with connected fibres

over a smooth connected variety B. Suppose that one fibre (and hence all fibres) Xb satisfies
H1(Xb,Z) = 0. We fix a family of polarizations H on X . We consider μr ⊂O×

X as a constructible
sheaf in the étale topology on X . Then R2f∗μr is a constructible sheaf too and

(R2f∗μr)b ∼=H2(Xb, μr),

for all closed points b∈X by the proper base change theorem [Mil13, Theorem 17.7]. We fix a
section

w̃ ∈H0(B, R2f∗μr).

20This isomorphism is essentially established in [Yos06, Lemma 2.2]. Additionally, we show that in our context
E-twisted stability on X [Yos06, Definition 2.2] coincides with μ-stability on X, and we fix Chern character twisted
by B-field, which leads to a nice comparison of Chern classes.
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Given a class w ∈H2(Xb, μr) for some closed point b∈B, it is always possible to find such w̃ in
an étale neighbourhood of b that restricts to w over b. This fact uses the proper base change
theorem. We make the following two assumptions:

• r is prime; and

• gcd(r, w̃bHb) = 1 for some (and hence all) closed points b∈B.

This allows us to rule out strictly semistable objects as follows.

Lemma 4.11. Suppose r is prime and gcd(r, w̃bHb) = 1 for some (and hence all) closed points
b∈B. Then, for any closed point b∈B, any degree r Brauer–Severi variety Y →Xb with w(Y ) =
w̃b, and any c2, the moduli space MHb

Y (r, 0, c2) is projective.

Proof. Since r is prime, the order of the Brauer class o(w̃b)∈Br(Xb) is either r or 1. In the
former case, there are no strictly semistable objects because stability is automatic (Remark 3.5).
In the latter case, we apply Proposition 4.10.

21 �

We require the following result of de Jong used in his proof of the period-index theorem
[dJo04] (and which does not require r prime):

22

Theorem 4.12. (de Jong). For any closed point 0∈B, there exists an étale neighbourhood
(U, 0)→ (B, 0) and a degree r Azumaya algebra A on XU :=X ×B U such that

w(Ab) = w̃b ∈H2(XU |b, μr)
for all closed points b∈U .

The idea of the proof of this result is as follows. Pick a closed point 0∈B. By Theorem 2.15
(which is actually a consequence of the period-index theorem [Lie08]), there exists an Azumaya
algebra A on X such that w(A) = w̃0 ∈H2(X0, μr). The obstruction space governing defor-
mations of A is given by H2(X0,A/OX0

). de Jong shows that (after applying an elementary
transformation to A), we may choose A such that H2(X0,A/OX0

) = 0 [dJo04, Proposition 3.2].
Using Grothendieck’s existence theorem and Artin’s approximation theorem, it then follows that
there exists an étale neighbourhood U →B and a degree r Azumaya algebra A on XU :=X ×B U
such that w(A0) = w̃0. Using the proper base change theorem, we can go to a further étale
neighbourhood where w(Ab) = w̃b for all closed points b∈U .

For the following theorem, we fix a= (a1, . . . , aN )∈ {1, 2}N and a family of formal insertions
P= {Pv,a}v≥0 (§ 4.2). Furthermore, for each i= 1, . . . , N , we fix a flat section

α̃i ∈H0(B,H2ai

dR ).

We suppose r is prime and gcd(r, w̃bHb) = 1 for some (and hence all) closed points b∈B. By

Lemma 4.11, the PGLr generating function ZPGLr,P
(Xb,Hb),w̃b

(q) is defined on all the fibres of X →B.

Theorem 4.13. Let w̃ ∈H0(B, R2f∗μr) be a section. Suppose r is prime and gcd(r, w̃bHb) = 1

for some (and hence all) closed points b∈B. Then ZPGLr,P
(Xb,Hb),w̃b

(q) is independent of the closed

point b∈B.

21Note that in Proposition 4.10, we fix Chern character twisted by B-field, whereas in this remark we do not use
the B-field. Concretely, for a (necessarily algebraic) lift c1 of w̃b, we have M

Hb
Y (r, 0, c2)∼=M

Hb
Y,c1/r

(r, c1, c2 + (r−
1)c21/2r).
22Strictly speaking, this result is not explicitly stated in [dJo04] but follows immediately from [dJo04, Proposition
3.2] and the argument in [dJo04, §6].
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Proof. First, fix a closed point b∈B and let X :=Xb, H :=Hb, w := w̃b, and αi := (α̃i)b for all
i. As discussed in Remark 4.4, it is not desirable to extend the B-field in families, so we first
observe

ZPGLr,P
(X,H),w(q) =

∑
c2∈Q

q
vd(r,0,c2)

2r

∫
[MH

Y (r,0,c2)]vir
Pvd(r,0,c2),a(r, X,α;MH

Y (r, 0, c2), E).

We focus on deformation invariance of the term indexed by c2 ∈Q in the generating function.
Note that ch = (r, 0,−c2) trivially extends to a flat section ṽ ∈⊕p Γ(B,H2p

dR).
By Theorem 4.12, we can cover the base B by (connected) étale opens U →B, such that on

each XU →U , we have an Azumaya algebras A of degree r with w(Ab) = w̃b for all b∈U . Fix
such an open. By the correspondence of Proposition 2.5, we therefore have a family of degree r
Brauer–Severi varieties

YU →XU

such that w(YU |b) = w̃b for all b∈U . Hence, we have a relative moduli spaceMYU/XU
and virtual

fundamental class [MYU/XU
]vir as in § 4.1. Since P lifts to an insertion on MYU/XU

, we deduce

from (12) that the term corresponding to c2 of ZPGLr,P
(Xb,Hb),w̃b

(q) is independent of b in the image of
U →B. �

5. The PGLr–SLr correspondence

5.1 Main result

Let f :X →B be a smooth projective morphism of relative dimension n with connected fibres
over a smooth connected variety B. We first let the relative dimension n be arbitrary. Suppose
H1(Xb,Z)tor = 0 for some (and hence all) closed points b∈B. We recall that the stalk of the
constructible sheaf R2f∗μr at b is

(R2f∗μr)b ∼=H2(Xb, μr)

by the proper base change theorem. We fix a section

w̃ ∈H0(B, R2f∗μr).

We will now work in the complex analytic topology and make the following assumption: there
exists a closed point 0∈B and a class β ∈H1,1(X0) such that the composition

TB,0 →H1(X0, TX0
)→H2(X0, TX0

⊗Ω1
X0
)→H2(X0,OX0

) (15)

is surjective. Here the first map is the Kodaira–Spencer map, the second map is ∪β and the final
map is contraction.

By [Voi13, Voi03], this map can also be expressed in terms of the Gauß–Manin connection

∇ :H2
dR →H2

dR ⊗Ω1
B

as ∇0(β), where β is viewed as an element of (F 1H2
dR/F

2H2
dR)|0. The surjectivity of (15) implies

that the Noether–Lefschetz locus of β, i.e. locally analytically the locus in B where β remains
of Hodge type (1, 1), is smooth of ‘expected’ codimension h2,0(X0) at 0 [Voi13]. Precisely the
same assumption is made by Green to show that the Hodge locus is dense [Gre89]. When n= 2
and β is Poincaré dual to an algebraic class on X0, the same assumption is also used in the
theory of reduced virtual fundamental classes in [KT14a, KT14b]. Note that β does not have
to be related to w̃; all we require is the existence of some class with Noether–Lefschetz locus of
expected codimension.
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Example 5.1. The family X →B ⊂ |OP3(d)| of smooth degree d surfaces in P3 of degree d≥ 4
has the property that the locus of points in B admitting β, such that (15) is surjective, is dense
by [Kim91] (see also [CHM88]).

Example 5.2. Let U be the moduli space of relatively minimal elliptic surfaces X→ P1 with
a section, irregularity q= 0, and geometric genus pg ≥ 2. Suppose that X is an elliptic surface
which has no reducible fibres and j-invariant not identically zero. Then [Cox90, Proposition 1.18]
calculates the rank of (15). Using this description, one can find classes β satisfying (15).

For further examples, we also refer to [BGL21].

Proposition 5.3. Suppose (15) is surjective. For any complex analytic simply connected
neighbourhood U of 0∈B, there exists a point b∈U such that the Brauer class of w̃b is trivial.

Proof. As in [Voi03, Proposition 5.20], we first observe that (15) is a Zariski open condition on
β, so we may take β ∈H1,1(X0)∩H2(X0,R). Take any simply connected open neighbourhood
U of 0. Using the notation of [Voi03], we have a trivialization

t :H2
R
∼=U ×H2(X0,R),

and (on U) we consider the composition

φ :H1,1
R ↪→H2

R

t−→U ×H2(X0,R)
π−→H2(X0,R),

where π is the projection. Surjectivity of (15) implies that this map is a submersion at (0, β) by
[Voi03, Lemma 5.22], and hence a submersion in a neighbourhood W of (0, β). In particular φ is
open on W . We note that t preserves rational and integral classes. Furthermore, viewing R2f∗μr
as a local system in the complex analytic topology,

23

t trivializes R2f∗μr|U to the constant sheaf
H2(X0, μr).

Still working over U , since H2(X0,Q) is dense in H2(X0,R) we can pick a (b′, γ)∈W with
π(t(b′, γ)) rational, and hence γ rational. Now choose a representative ξ ∈H2(X0,Z) of w̃0

(Lemma 3.1). Consider the class

π(t(b′, γ)) +
ξ

rN

for any N ∈Z>0. Using the fact that φ is open in a neighbourhood of (b′, γ), we can choose N � 0
such that π(t(b′, γ)) + ξ/rN lies in the image of φ and such that Nπ(t(b′, γ)) is integral. Then
there exists a (b, δ)∈H1,1

R mapping to π(t(b′, γ)) + ξ/rN . Since t preserves rational and integral
classes, we deduce that ε := rNδ is an integral (1, 1) class on Xb. Moreover, ε mod rH2(Xb,Z)
corresponds to ξ mod rH2(X0,Z). Hence ε represents w̃b, and w̃b has trivial Brauer class by
the Kummer sequence (5). �

We now come to the main theorem of the paper. We fix the relative dimension of f :X →B
to be 2. We also choose a relative very ample divisor H with respect to f . Over some closed
point 0∈B, we fix a Stiefel–Whitney class

w ∈H2(X0, μr).

23Note that the image of the constructible étale sheaf R2f∗μr under the map Sh(Bét)→ Sh(Ban) is the analytic
sheaf R2f∗μr by the comparison theorem [Mil13].
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We fix a= (a1, . . . , aN )∈ {1, 2}N and a family of formal insertions P= {Pv,a}v≥0 (§ 4.2).
Furthermore, for each i= 1, . . . , N , we fix an algebraic class

αi ∈H2ai(X0,Q).

By the proper base change theorem, after replacing B by an étale neighbourhood of 0, we may
assume that w extends to a section

w̃ ∈H0(B, R2f∗μr).

By base change for Hodge bundles, after replacing B by a Zariski neighbourhood of 0, we may
assume the classes αi extend to flat sections

α̃i ∈H0(B,H2ai

dR ).

Theorem 5.4. Let w̃ ∈H0(B, R2f∗μr) be a section. Suppose r is prime and gcd(r, w̃bHb) = 1
for some (and hence all) closed points b∈B. Suppose for some closed point 0∈B, there exists
a class β ∈H1,1(X0) such that the following composition is surjective:

TB|0 KS0−→H1(X0, TX0
)

∪β−→H2(X0,OX0
),

where the first arrow is the Kodaira–Spencer map and the second is cupping with β followed
by contraction. Then any complex analytic simply connected neighbourhood U of 0 contains a
closed point b∈U such that w̃b ∈H2(Xb, μr) has trivial Brauer class and

ZPGLr,P
(X0,H0),w̃0

(q) = ZSLr,P
(Xb,Hb),c1

(q),

where c1 ∈H2(Xb,Z) is any (necessarily algebraic) representative of w̃b.

Proof. Let U be any complex analytic simply connected neighbourhood of 0. By Proposition 5.3,
there exists a closed point b∈U such that w̃b has trivial Brauer class. By Theorem 4.13, we have

ZPGLr,P
(X0,H0),w̃0

(q) = ZPGLr,P
(Xb,Hb),w̃b

(q).

Pick a (necessarily algebraic) representative c1 ∈H2(Xb,Z) of w̃b (Lemma 3.1, (5)). Pick a degree
r Brauer–Severi variety over Xb with Stiefel–Whitney class w̃b (Theorem 2.16), which is therefore
of the form P(E∨) for a rank r vector bundle E on Xb (§ 2.1). By Proposition 4.10, we have

ZPGLr,P
(Xb,Hb),w̃b

(q) = ZSLr,P
(Xb,Hb),c1

(q),

which establishes the result. �

5.2 Application to Vafa–Witten theory

We recall the ‘horizontal’ universality conjecture of the fourth-named author and Göttsche and
Laarakker [GKL24, Conjecture 1.10]. We defined Δ(q) and εr in the introduction.

Conjecture 5.5. (Göttsche–Kool–Laarakker). For any r > 1, there exist
24

D0, {Dij}1≤i≤j≤r−1 ∈C[[q
1

2r ]]

with the following property. For any smooth polarized surface (X,H) satisfying b1(X) =
0, h2,0(X)> 0, c1 ∈H2(X,Z), and c2 ∈H4(X,Z) such that there are no rank r strictly
Gieseker H -semistable sheaves on X with Chern classes c1, c2, the virtual Euler characteristic

24These universal functions only depend on r. Note that we use a different normalization of D0 in loc. cit.
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evir(MH
X (r, c1, c2)) equals the coefficient of qvd(r,c1,c2)/2r in

r2+K2
X−χ(OX)

(
1

Δ(q
1

r )
1

2

)χ(OX)

D
K2

X

0

∑
(a1,...,ar−1)∈H2(X,Z)r−1

∏
i

εiaic1
r SW(ai)

∏
i≤j

D
aiaj

ij .

Evidence for this conjecture was obtained by direct implementation of Mochizuki’s formula
[Moc09] in [GK18, GK20b]. We deduce the following.

Corollary 5.6. Suppose X =X0 and w= w̃0 for a family X →B satisfying the conditions of
Theorem 5.4 and h2,0(X)> 0. Fix any δ ∈Z such that δ≡−(r− 1)w2 − (r2 − 1)χ(OX) mod 2r.

Then Conjecture 5.5 implies that the coefficient of qδ/2r in ZPGLr,Eu
(X,H),w (q) equals the coefficient of

qδ/2r in

r2+K2
X−χ(OX)

(
1

Δ(q
1

r )
1

2

)χ(OX)

D
K2

X

0

∑
(a1,...,ar−1)∈H2(X,Z)r−1

∏
i

εiaiw
r SW(ai)

∏
i≤j

D
aiaj

ij .

Closed conjectural expressions for D0, Dij can be found in [GK18, GK20b, GKL24] for r=
2, 3, 5. For r= 2, 3 they are expressed in terms of the Dedekind eta function and the theta
functions of the A∨

r−1 lattice [GK19, GK20b]. For r= 5, the expressions also involve the Rogers–
Ramanujan continued fraction [GKL24].

Let X be a smooth projective surface satisfying H1(X,Z) = 0, h2,0(X)> 0, and let c1 ∈
H2(X,Z) be an algebraic class. In [TT20], Tanaka and Thomas give a mathematical definition

of the SU(r) Vafa–Witten partition function VW
SU(r)
X,c1

(q). As mentioned in the introduction, for
r prime, a definition of the PSU(r) Vafa–Witten partition function was given in [JK21] (see also
[Jia22]). It is of the form

VW
PSU(r)
X,c1

(q) =
∑

w∈H2(X,μr)

εc1wr VWX,w(q).

For o(w) = 0, one is reduced to untwisted Higgs pairs and VWX,w(q) can be defined using the
approach of Tanaka and Thomas. For o(w) �= 0, we take [JK21]

VWX,w(q) := ZPGLr,Eu
X,w (q).

Assuming the above-mentioned closed conjectural expressions for the universal functions for
r= 2, 3, 5, the following S-duality conjecture (due to Vafa and Witten [VW94] and mathemati-
cally formulated in [JK21]) was checked for r= 2 [DPS99, GK18, VW94], r= 3 [GK18] and r= 5
[GKL24].

conjecture 5.7. (Vafa–Witten). Let (X,H) be a smooth polarized surface satisfying

H1(X,Z) = 0 and h2,0(X)> 0. Let r be prime and c1 ∈H2(X,Z) algebraic. Then VW
SU(r)
X,c1

(q) and

VW
PSU(r)
X,c1

(q) are Fourier expansions in q= exp(2π
√−1τ) of meromorphic functions VW

SU(r)
X,c1

(τ)

and VW
PSU(r)
X,c1

(τ) on the upper half-plane satisfying

VW
SU(r)
X,c1

(−1/τ) = (−1)(r−1)χ(OX)
( rτ√−1

)− e(X)

2

VW
PSU(r)
X,c1

(τ).

5.3 Application to cmin
2 of Azumaya algebras

Let X be a smooth projective surface with H1(X,Z) = 0 and function field C(X). Let D be a
(central) division algebra over C(X) of degree r > 1 (equivalently, an element of Br(C(X)) of
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order r). We assumeD lies in the image of Br(X) ↪→Br(C(X)). As mentioned in the introduction,
we are interested in the smallest c2 for which there exists an Azumaya algebra A on X whose
stalk over the generic point η ∈X is isomorphic to D. We refer to this value as cmin

2 and recall
that Artin and de Jong proved [AdJ04, Corollary 7.1.5, Theorem 7.2.1]

cmin
2 ≥max{r2χ(OX)− h0(ω⊗r

X )− 1, 0}.
Our general strategy is as follows.

• Fix a class w ∈H2(X, μr) such that its Brauer class o(w)∈Br(X) ↪→Br(C(X)) corresponds
to D. This is possible since H2(X, μr) surjects onto H

2(X,Gm)[r] by (5).

• Fix any δ ∈Z such that δ≡−(r− 1)w2 − (r2 − 1)χ(OX) mod 2r. Suppose the coefficient

of qδ/2r of some PGLr generating function ZPGLr,P
(X,H),w(q) is non-zero.

• Denoting by ξ ∈H2(X,Z) a lift of w (Lemma 3.1), we conclude that for any degree r
Brauer–Severi variety Y →X with w(Y ) =w (which exist by Theorem 2.16), the moduli
space MH

Y,ξ/r(r, ξ, c2) is non-empty, where c2 ∈Z is determined by the equation δ= 2rc2 −
(r− 1)ξ2 − (r2 − 1)χ(OX).

• Therefore, by Corollary 3.9, there exists an Azumaya algebra A on X whose stalk over
the generic point is isomorphic to D satisfying c2(A)≤ δ+ (r2 − 1)χ(OX). In particular
cmin
2 ≤ δ+ (r2 − 1)χ(OX).

We illustrate this strategy by focusing on the leading term of ZPGLr,P
(X,H),w(q). For this, we use the

explicit form of the Mariño–Moore conjecture [LM05, MM98] due to Göttsche [Got21], which
we now recall. For a smooth polarized surface (X,H) satisfying H1(X,Z) = 0, we fix r, c1 so
that there are no rank r strictly Gieseker H-semistable sheaves on X with first Chern class
c1, and consider the Gieseker–Maruyama–Simpson moduli space MH

X (r, c1, c2). For any class
α∈H∗(X,Q) and k ∈Z≥0, one defines the μ-insertion

μ(α) :=−πM∗
(
π∗Xα∩ ch2(E ⊗ det(E)− 1

r )
)
,

where πM , πX are the projections from M ×X to M,X respectively. Denote the Poincaré dual
of the point class by pt∈H4(X,Z). We are interested in the following generating series of
(algebro-geometric) SLr Donaldson invariants:

ZSLr,D
(X,H),c1

(z) =
∑
c2∈Z

zvd(r,c1,c2)
∫
[MH

X (r,c1,c2)]vir
exp

(
μ(L) + μ(pt) · u

)
,

where L∈H2(X,Z) and u is a formal variable. We first recall Witten’s conjecture, proved in
the algebro-geometric set-up by Göttsche, Nakajima and Yoshioka [GNY11].

Theorem 5.8. (Göttsche–Nakajima–Yoshioka). Let (X,H) be a smooth polarized surface satis-
fying H1(X,Z) = 0 and h2,0(X)> 0. Let c1 ∈H2(X,Z) be such that there are no rank 2 strictly
Gieseker H-semistable sheaves on X with first Chern class c1. Then the coefficient of zvd(2,c1,c2)

in ZSL2,D
(X,H),c1

(z) equals the coefficient of zvd(2,c1,c2) in

22−χ(OX)+K2
Xe(

1

2
L2+2u)z2

∑
a∈H2(X,Z)

(−1)ac1SW(a)e−(2a−KX)Lz.

The higher rank generalization of Witten’s conjecture is known as the Mariño–Moore conjec-
ture [MM98] (see also [LM05]). We discuss its algebro-geometric version due to Göttsche [Got21].
Define [r− 1] := {1, . . . , r− 1}. We require the following numbers: for all 1≤ i < j ≤ r− 1,
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βij :=
sin((i+ j)π/2r)

sin((j − i)π/2r)
∈R>0, βji := βij ,

B :=
∑

I⊂[r−1]

∏
i∈I

j∈[r−1]\I

βij .

Conjecture 5.9. (Göttsche). Let (X,H) be a smooth polarized surface satisfying H1(X,Z) = 0
and h2,0(X)> 0. Let r > 1 and c1 ∈H2(X,Z) such that there are no rank r strictly Gieseker H-

semistable sheaves onX with first Chern class c1. Then the coefficient of zvd(r,c1,c2) in ZSLr,D
(X,H),c1

(z)

equals the coefficient of zvd(r,c1,c2) in

r2−χ(OX)BK2
Xe(

1

2
L2+ru)z2

∑
a

∏
i

εiaic1
r SW(ai)e

− sin(iπ/r)(2ai−KX)Lz
∏
i<j

β
(2ai−KX)(aj−ai)
ij ,

where the sum is over all a= (a1, . . . , ar−1)∈H2(X,Z)r−1.

The r= 3, 4, 5 cases of this conjecture also appear in [GK22, GKL24] as consequences of
other conjectures.

Let w ∈H2(X, μr), π : Y →X a choice of degree r Brauer–Severi variety with w(Y ) =w
(Theorem 2.16), and ξ ∈H2(X,Z) a lift of w (Lemma 3.1). We assume r is prime and
gcd(r, wH) = 1. We consider the following generating series of PGLr Donaldson invariants:

ZPGLr,D
(X,H),w(z) =

∑
c2∈Z

zvd(r,ξ,c2)
∫
[MH

Y,ξ/r(r,ξ,c2)]
vir

exp
(
μ(L) + μ(pt) · u

)
,

where, for any α∈H∗(X,Q), we define

μ(α) :=−πM∗
(
π∗Xα∩ ch2(π∗(E ⊗ det(E)− 1

r ))
)
.

Corollary 5.10. Suppose X =X0 and w= w̃0 for a family X →B satisfying the conditions of
Theorem 5.4 and h2,0(X)> 0. Fix any δ ∈Z such that δ≡−(r− 1)w2 − (r2 − 1)χ(OX) mod 2r.

Then Conjecture 5.9 (which holds for r= 2) implies that the coefficient of zδ in ZPGLr,D
(X,H),w(z)

equals the coefficient of zδ in

r2−χ(OX)BK2
Xe(

1

2
L2+ru)z2

∑
a

∏
i

εiaiw
r SW(ai)e

− sin(iπ/r)(2ai−KX)Lz
∏
i<j

β
(2ai−KX)(aj−ai)
ij ,

where the sum is over all a= (a1, . . . , ar−1)∈H2(X,Z)r−1.

SupposeX is a minimal surface of general type satisfyingH1(X,Z) = 0 and h2,0(X)> 0. Then
the only Seiberg–Witten basic classes a∈H2(X,Z), i.e. the only classes for which SW(a) �= 0, are
a= 0, KX and the corresponding Seiberg–Witten invariants are 1, (−1)χ(OX) [Mor96, Theorem
7.4.1]. Then the formula of Corollary 5.10 simplifies dramatically. We take u= 0 and L=KX

and record the leading coefficients of the formula for r= 2, 3. The main observation is that in
each case the leading coefficient is positive.

Example 5.11. For r= 2, we have the following cases.

• For wKX + χ(OX)≡ 0 mod 2, the leading term is

22−χ(OX)+K2
X · 2z0.

Taking a representative w= [ξ] with ξ ∈H2(X,Z), in this case we have vd(2, w, c2)≡ 0
mod 2 for all c2 ∈Z. Here we used Wu’s formula w2 ≡wKX mod 2.
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• For wKX + χ(OX)≡ 1 mod 2, the leading term is

22−χ(OX)+K2
X (2K2

X)z.

Taking a representative w= [ξ] with ξ ∈H2(X,Z), in this case we have vd(2, w, c2)≡ 1
mod 2 for all c2 ∈Z.

Example 5.12. For r= 3, we have the following cases.

• For wKX ≡ 0 mod 3, χ(OX)≡ 0 mod 2 the leading term is

32−χ(OX)+K2
X (21+K2

X + 2)z0.

• For wKX ≡ 0 mod 3, χ(OX)≡ 1 mod 2 the leading term is

32−χ(OX)+K2
X (21+K2

X − 2)z0.

• For wKX ≡ 1, 2 mod 3, χ(OX)≡ 0 mod 2 the leading term is

32−χ(OX)+K2
X (21+K2

X − 1)z0.

• For wKX ≡ 1, 2 mod 3, χ(OX)≡ 1 mod 2 the leading term is

32−χ(OX)+K2
X (21+K2

X + 1)z0.

Taking a representative w= [ξ] with ξ ∈H2(X,Z), in each of these cases we have
vd(r, ξ, c2)≡ 0 mod 2 for any c2 ∈Z.

Remark 5.13. It is natural to expect that the formula for ZPGLr,D
(X,H),w of Corollary 5.10 also

holds when r > 1 is not necessarily prime (at least when there are no strictly semistables).
Experimentation for ranks r > 3 leads us to the following expectations. For X,H, w as above
and any odd rank r, we have

ZPGLr,D
(X,H),w(0)∈Z>0.

Moreover, for any even rank r, we have⎧⎨⎩ ZPGLr,D
(X,H),w(0)∈Z>0 if wKX + χ(OX)≡ 0 mod 2,

∂
∂zZ

PGLr,D
(X,H),w(0)∈Z>0 if wKX + χ(OX)≡ 1 mod 2.

Taking a representative w= [ξ] with ξ ∈H2(X,Z), for r odd we have vd(r, ξ, c2)≡ 0 mod 2,
and for r even we have vd(r, ξ, c2)≡wKX + χ(OX) mod 2 for any c2 ∈Z. This positivity is
obvious in the case r is odd, wKX ≡ 0 mod r, and χ(OX)≡ 0 mod 2, but appears non-trivial
in general.

25

Combining Example 5.11 and Corollary 5.10, we deduce the following.

Theorem 5.14. Suppose X =X0 for a family X →B satisfying the conditions of Theorem 5.4,
and X is a minimal surface of general type satisfying h2,0(X)> 0. Let D ∈Br(C(X)) be a degree
r division algebra in the image of Br(X) ↪→Br(C(X)). Then, for r= 2, we have

cmin
2 ≤ 3χ(OX) + 1.

Moreover, for r= 3 and assuming Göttsche’s conjecture 5.9 for r= 3, we have

cmin
2 ≤ 8χ(OX).

25The expectation in this remark was first formulated for r prime by the authors, and then generalized to any r
by Göttsche in an email conversation.
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Proof. Let α∈Br(X) be the Brauer class corresponding to D. Let Y be a degree r Brauer–Severi
variety with o(w(Y )) = α (Theorem 2.16).

For r= 2, by Example 5.11, there are two cases. (1) For wKX + χ(OX)≡ 0 mod 2 and
running the strategy at the beginning of this section, we deduce cmin

2 ≤ 3χ(OX). (2) For wKX +
χ(OX)≡ 1 mod 2, we deduce cmin

2 ≤ 3χ(OX) + 1.
For r= 3, Example 5.11 implies the result. �

In general, if the expectation of Remark 5.13 holds and we take X as in the previous theorem,
then for any degree r > 1 division algebra D ∈Br(C(X)) in the image of Br(X) ↪→Br(C(X)), we
obtain {

cmin
2 ≤ (r2 − 1)χ(OX) + 1 for r even,

cmin
2 ≤ (r2 − 1)χ(OX) for r odd.
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[FG10] B. Fantechi and L. Göttsche, Riemann–Roch theorems and elliptic genus for virtually smooth

schemes , Geom. Topol. 14 (2010), 83–115.
[Ful98] W. Fulton, Intersection theory (Springer, New York, 1998).
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