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Abstract Our main results, specialized to unimodal interval maps T with negative
Schwarzian derivative, are the following
(1) There is a set CT such that the w-limit of Lebesgue-a e point equals CT CT is

a finite union of closed intervals or it coincides with the closure of the critical
orbit

(2) There is a constant Ar such that AT = hm,,^ \/n log |(7")'(x)| for Lebesgue-a e

x
(3) A T > 0 if and only if T has an absolutely continuous invariant measure of

positive entropy
(4) AT>inf {p'x log |(Tp)'(z)| Tpz = z}, le uniform hyperbohcity on periodic

points implies AT > 0, and AT < 0 implies the existence of a stable periodic orbit

1 Introduction and main results
In Keller (1987) we proved that the canonical Markov extensions of 5^-unimodal
maps (1 e unimodal maps with negative Schwarzian derivative) are either dissipative
or (essentially) conservative and ergodic with respect to Lebesgue measure and that,
in the conservative case, they have a finite or o--finite invariant density This
classification enabled us to show that an S^-ummodal map has a finite ergodic
invariant density if and only if it has positive upper Lyapunov exponents on a set
of positive Lebesgue-measure

In this paper we attempt to extend this result in two directions on one side we
describe further consequences of the Hopf-decomposition We prove, for example,
that for each S^-unimodal map there is a unique compact set C which is the w-hmit
of Lebesgue-a e trajectory In the conservative case C is a finite union of intervals,
whereas it is the closure of the critical orbit in the dissipative case This answers a
question of Milnor (1985) Our second goal is to clarify which properties of
5^-unimodal maps are vital to the above results To this end we prove the existence
of a nice Hopf-decomposition for a more abstract class of dynamical systems that
we call regular Markov systems It includes in particular the canonical Markov
extensions of multimodal maps with negative Schwarzian derivative (Blokh and
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718 G Keller

Ljubich (1987) showed that these maps have no homtervals if they have no stable
periodic points ) In view of recent work of de Melo and van Stnen (1986), van
Stnen (1988), and Nowicki and van Stnen (1988) there is some hope that also more
general smooth maps (not necessarily with negative Schwarzian denvative) give nse
to Markov extensions covered by this result In the following we give an outline of
this paper

In § 2 we investigate regular Markov systems let X be a metric space which
comes with a finite or countable partition S£ We assume that each D e $C is cr-
compact Fix a subset Y of X and a finite or countable partition <3/ of Y such that
for each Z € "3/ there l s D e f with Z c D and assume that T Y-*X is such that
T(Z)e^ and T Z-> T(Z) is a homeomorphism for all Z e % Writing Y, = Y,
Yn+X = Yn T~~lYn and Y^ = P U , Yn, one can consider T" Yn^X Let

^ n = { Z o n T " ' Z i n n r ^ " " ' ^ ^ , Z, e <3/ Vi}

Then Tn(Z)e% and T" Z^> T"(Z) is a homeomorphism for all Z e » , We call
such a system (X, T) a Markov system

Next we introduce a Borel-measure wi on X In concrete examples this will usually
be Lebesgue measure or any other measure naturally associated with the metric
structure of X Hence we assume that m gives positive measure to each open set
Two minor additional assumptions are that m(Z)>0 for all Z e "3/ and that there
is fc>0 such that cl (Z) is compact and m(Z)<oo for all Ze<3/k The main
assumptions relating T and m are
(1) T is nonsingular with respect to m, I e there is a positive linear contraction

P Vm^ Vm such that \A Pfdm = ]T tAfdm for all Borel sets A c X In particular
there is a measurable function g X -* R+ such that

Pf= I (/ g)°T~z\ TZ=T]Z (11)

1/g is the 'denvative' of T with respect to m
(2) There is a positive cone $f c <#(X) containing the functions ^D, D e f , such that

af (12)

2if is closed in the topology of uniform convergence on compact subsets (1 3)

5if-^isdensein Lx
m (14)

For all D € d£ and for all compact K c D the set

{logf\K / e 5if,/#0} is equicontinuous (15)

As P"f=lz^v P(P"~lf Xz), it follows inductively from (1 2), (1 3) and (1 5)
that

P"feXox Pnf=oo for all « > 0 a n d / e ^ (16)

Observe also that (1 5) implies f\D = 0 or f\D>0 for/e $f and D e f A quadruple
(X, T, m, S€) as above is called a regular Markov system
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The transformation T induces a combinatorial Markov structure on ^ For
U,Ve<& write

U^V if Vc TU,

U^ V if there are U= Uo-+ I/,-* -*Un=V,

U^V if L/< Vand V < l / o n f t /= V

This yields equivalence classes [ U], [ V], etc, ordered by [ [/] :< [ V] if 1/ < V
We call [ I/] maximal, if [ ( / ]<[ V] implies [ I/] = [ V]

Let supp[ U] = {x 6 X x e V for some V = £/} The sets supp [ £/] provide a finite
or countable partition of X into irreducible subsets X,, i e / As 71/ e if for Us®,
each X, is a union of elements from Sf except when X,= U for some 1/ e *3/ with
£/ T* 1/ We call X, maximal if it is the support of a maximal equivalence class As
in the theory of countable state Markov chains (e g Ch 7 of Breiman, 1968), each
X, has a minimal period p,, and each maximal X, is a disjoint union of sets
X,,, , X, Pi which are cyclically permuted by T The X, _, are unions of elements
from 3d For later use we remark that for each X, holds

or fx>0 (17)

Finally let B, = L U 0
 T~"x-

In this situation we have

THEOREM 1 Let feWnLl
m and SJ =Y,"k'=\ Pkf Fix some tel and xoeX, Let

sn = Snf(x0) and suppose that sn>0 for some n Then sn = O(n), f{y) =
limn^K s~lSnf(y) exists for all ye B,, 0 < / < o o on X,, and f xx, £ % Furthermore
(1) If (sn) is bounded, then P is dissipatwe on X,
(2) / / (sn) is unbounded, then P is conservative on X,, m(X,\Yoo) = 0, and X, is

maximal
(3) If U n 2 o T~"x0 is dense in X, and if (sn) is unbounded, then there is a unique

h, e S€, such that Ph, = h,, h,(x0) = 1, h, > 0 on X,, and h, = 0 on X \X, h, has the
following properties
(a) / Xx, '* o constant multiple of h, and / = 0 on all nonmaximal Xj for each

fefflnLln If<j>e Vm, then lim^oc s^Sn<j> = h, JB (/> dm/\B fdm m-a e on
X, As a consequence, the system (T, h, dm) is pomtwise dual ergodic

(b) ihldtn<ooifandonlyifniSnf^y /asn->oom-ae on B, for some y > 0
In particular the system (T, h, dm) is ergodic If, even more, for each compact
K c x and each S > 0 there is k > 0 such that K nXu is contained in the
8-neighbourhood ofT~kP:x0 (for that X,, which contains x0), then we have also

(c) / / J h, dm <oo then the measure-preserving system (T, h, dm) is the product
of an exact system with a finite rotation

(d) / / $h,dm =oo, then P"ij/^O as n-»oo uniformly on compact subsets for all
l with 0<I /*</J ,

Recall that P is dissipatwe on X, if S n a 0 P"f<°0 w-a e for each />0 in L'm and
that P is conservative on X, if there is some feLl

m, positive on X,, such that
L n - o ^ " / = 0 0 m - a e o° -̂ i (cf §3 1 in Krengel, 1985) The measure-preserving

https://doi.org/10.1017/S0143385700005861 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005861


720 G Keller

system (T,/x) is exact, if it has a trivial tail-field, and it follows from Lin (1971)
that this is equivalent to lim,,.^ | |P"/-J/d/i. | | =0 for all fe Vm The conservative,
ergodic measure-preserving system (T, fi) is pointwise dual ergodic, if for the dual
operator T* L\-» L\ defined by J if/ T*<t> dfi = J ty ° T ^ d / t ^ e L*, 0 e L]J there
is a sequence (an) of positive reals such that hm,,̂ ,*, a~n

x X£=o 7'*'I</> = l 4> df* /x-a e
for all <f> e L\ (see Aaronson, 1981)

We pause here for a moment to see how maps with nonpositive Schwarzian
derivative fit into the framework of regular Markov systems and to discuss a first
application of Theorem 1

Let U and V be two finite open intervals and suppose that F U-> V is a
9?3-diffeomorphism with nonpositive Schwarzian derivative, l e

F" 3/F"\
SfF = - — - I —I =£0F 2\F'J

We denote by 3)r{U) the set of all positive functions / in T{V) for which \/yff
is concave Misiurewicz (1980) noticed that l f /e 2)2( U), then (f/\F'\) »F" ' e 2>2( V),
and an approximation argument shows that the same is true with 3)°( U) and 2>°( V)
instead of 3)2(U) and 2>2( V) Using another observation of Misiurewicz's, namely
that SfFsQ if and only if l /v |F ' | is convex, one can actually prove the same
statement assuming only that F is ^ ' and l /v |F ' | is convex

Misiurewicz also proved that 2°{ U) is closed in the u c s topology and that
3)°( U) - ®°(U) is dense in Ll

m Finally observe that the concavity of l/VJ implies

(b-x)2~f(y)~(x-a)2

if U has endpomts a and b and i f a < x s ^ < b
Suppose now we are dealing with a Markov system where X is a finite or countable

disjoint union of finite open intervals and where T Z^T(Z) has nonpositive
Schwarzian derivative for all Z e °U Let

W ={fe<€{X) f]De3>\D) for all De f} (18)

In view of the above discussion (X, T, m, 3€) satisfies (1 1)-(1 5), l e it is a regular
Markov system Since it is one-dimensional, we can prove the following remark,
which facilitates the application of Theorem 1

Remark 1 Let (X, T, m, X) be a regular Markov system with nonpositive Schwarzian
derivative as described above If X, is an irreducible subset on which P is conservative
and if xoe X,j, then for all compact K ̂  X and all 8 > 0 there is a k > 0 such that
K nXn is contained in the 5-neighbourhood of T~kp'{x0} In particular T has no
homtervals (Recall that J is a homterval, if it is a nontnvial interval and if T"7 is
monotone for all n )

Proof Suppose the assertion is wrong Since P is conservative on X,, m(X,\ Yx) = 0
by Theorem 1 Hence there is a point x e K n X , , n Yx which has an open interval-
neighbourhood / such that xoi Tkp'(I) for infinitely many k>0 Let Un(x) be that
element of ^ n which contains x, J =Pln~»0 Un(x) Since A", is irreducible, InJ is
a nontnvial interval, whence J is a homterval Since it cannot be wandering-this
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would contradict the conservativity of P on X, - it must be cyclic, 1 e T"J c J for
some «>0 (n minimal with this property) But then / contains a stable (possibly
one-sided stable) periodic point of T with period n, which again contradicts the
conservativity of P on X, (I want to mention here that Blokh and Ljubich (1987)
actually proved the non-existence of wandering homtervals for maps with negative
Schwarzian derivative)

Now general interval maps with negative Schwarzian derivative do not come as
Markov maps However, there are several useful ways to derive Markov systems
from a given interval map and to study the map using the derived systems

A rather naive, but yet fruitful approach is the following Consider T [0,1 ] -* [0,1 ]
with

ST<0 and AT = {0, l}u{x T'(x) = 0} finite (19)

Let

KT= U c\{T"a n>0}
aeAT

and X = [0,1]\KT, Y = X n T~'X For % (resp <30 we take the partition of X
(resp "2/) into maximal open intervals Obviously T{Z)e3£ and T Z-> T(Z) is a
homeomorphism for all Z e <3/, I e (X, T) is a Markov system The above discussion
shows that Theorem 1 applies

Let Xd be the union of all those X, on which P is dissipative, Xc the union of
those X, on which P is conservative Observe that Xd and Xc are open sets and
that [0,1] is the disjoint union of Xd, Xc, and KT

If T\x, is dissipative, then for each compact LcX,

X m{x T"xeL}=Y. P"ldm=\ hm SJdm<oo,
nsO n>0jL J L "^°°

the finiteness of the integral being a consequence of (1 5) Hence a>(x) nint (L) = 0
for m-a e x e X, l e <o(x) n Xd = 0 for m-a e x e X On the other hand, if T"x e Xd

for large n>0, then w(x)c cl (Xd)c Xd u /CT Hence w(x)cKT for ra-ae

«nn2Or%
If x e U ^ o r~"Kr, then <o(x) £ XT, as TXT c XT and X r is closed
Finally we must consider those x, for which T"xeXc for some n^O As Xc is a

union of maximal irreducible subsets, for each such x there is a maximal X, such
that w(x)c cl (X,) We claim that there is even equality for m-a e such x Since T
is nonsingular, we may assume xeX,, and by Remark 1, T\x, is Lebesgue-ergodic
Hence there is equality, and we have deduced from Theorem 1 the following
COROLLARY 1 In the situation just described, for m-a e x e X holds a>(x) c KT or
a>(x) = cl (X,) for some X, on which P is conservative

More information about the sets io(x) can be obtained from another regular
Markov system associated with a map T [0,1]-* [0,1] which satisfies (1 9), namely
from its canonical Markov extension that we introduce in § 3 The dynamics of this
extension are so closely related to those of T that Theorem 1, applied to the extension,
is the key to the following refinement of Corollary 1 for ^-unimodal maps (These
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are maps T of [0,1] with 9T<0, T(0) = T(l) = 0, T'(O)>1, and just one point
c€[0,1] where r'(c) = 0)

THEOREM 2 Suppose Tis U'-ummodal Then one of the following is true w(x) = C =
(a finite union of compact intervals) for m-a e x e [0,1] or (o(x) = io(c) for m-a e
X6[0, l]

This theorem, whose final proof is given in § 4, answers a question of Milnor
(1985) A similar result was obtained by Guckenheimer and Johnson (1990) and,
as I was told, also by Blokh and/ or Lyubich
Note added in proof Blokh and Lyubich published this result in [Ergodic properties
of transformations of an interval, Funct Anal Appl 23 (1989), 48-49] Full proofs
are supplied in preprint 1990/2 of the Institute for Mathematical Sciences at the
SUNY Stony Brook Another proof of Theorem 2 is contained in the PhD thesis of
M Martens on Interval Dynamics, TU Delft (1990) Both papers contain further
interesting results about Cantor attractors

In § 3 we also investigate various growth numbers associated with a map T of
[0,1] which satisfies (1 9) Let

X(x) = TmT-log|(T")'(x)|, (110)
n-»cx> n

7(x)=hin-- logm(Z n ( jc)) , (111)

/*„,(£,) = - I m,(Z) log m,(Z), (112)

where Zn(x) is the maximal monotomcity interval of T" containing x, £,„ is the
collection of all Zn(x) for a given n, and m, is normalized Lebesgue measure on
B, By A(x) and I(x) we denote the corresponding limits of the expressions in (1 10)
and (111) if they exist

From the classification of the canonical Markov extension given by Theorem 1
we derive

THEOREM 3

(a) Suppose T satisfies (1 9) Then there are a measurable partition (Bu , Bp) of
[0,1] and constants A r , > 0 such that max{A(x),0} = A | , and I(x) =
limn-cc n '//„,(£„) = Ar , for m-a e xefl, For every B, holds

A J , > 0 if and only if T\Bt has an absolutely continuous invariant probability
measure /A, of positive entropy In this case JJL, IS unique and X(x) = I(x) =
n^,(T) = jlog 17"| dfj,, = AT , for m-a e xeB,, and there is X, c B, such that fi,
and m restricted to X, are equivalent measures and B, = U n 2 0 T~"X,

(b) If Tis ummodal as in Theorem 2, thenp = \, B, = [0,1], andifT"{c)9i0 we can
say a bit more There is a constant Ar such that A(x) = kTfor m-a e x and

(1) AT > 0 if and only if T has an absolutely continuous invariant probability measure
ft of positive entropy /x has all the properties of the measures y*., in (a)

(2) A r < 0 if and only if there is a strictly stable periodic orbit {z, Tz, , TqXz) In
this case A ( x ) = A ( z ) = A r for m-a e x
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This theorem has the following

COROLLARY 2 Each of the following conditions implies the existence of a unique
absolutely continuous T-invanant measure of positive entropy on B,
(1) X(x)>0 on a subset of B, of positive Lebesgue measure
(2) / ( x ) > 0 on a subset of B, of positive Lebesgue measure
(3) There are C>0 and a < 1 such that m(Z)sCa"ifZe £,
(4) TisSf-ummodalwith T"(c) ^ 0 and there are C > 0 and p > 1 such that \(T")'(z)\ >

C/3" ifT"z = z

For conditions (l)-(3) this is an immediate consequence of Theorem 3 The fact
that condition (4) also implies A r >0 was observed by Tomasz Nowicki (personal
communication) We give its proof in § 3

The reader will have observed that Theorem 3 does not provide any information
in the case Ar, = 0 It turns out that a great variety of different asymptotic behaviours
can occur in this case, and the full range of these possibilities is already displayed
by unimodal maps, e g by the quadratic family Ta(x) = ax(l -x) Therefore we
restnct our further discussion to y-unimodal maps T of [0,1], and we write AT

instead of AT1

Guckenheimer (1979) classified these maps into three types according to their
asymptotic topological behaviour An 5^-unimodal map T has either

(I) a unique stable periodic orbit z = Tpz, or
(II) an invariant zero-dimensional attractor restricted to which T acts like an

irreducible rotation on a compact group (generalized adding machine, also
called register shift), or

(III) T is sensitive to initial conditions, l e there is e > 0 such that for every interval
/S[0 ,1 ] there is some n >0 with m(T"I)> e

In case I, AT<0, and AT = 0 if and only if |(Tp)'(z)| = 1 In case II, AT = 0 by
Theorem 3, since T has neither a stable periodic orbit nor an absolutely continuous
invariant measure of positive entropy The unique invariant probability measure on
the attractor (the Haar-measure of the group rotation) has entropy zero In case III
there is no stable periodic orbit, whence A r > 0 by Theorem 3 On the other hand
this case compnses all maps T with A r >0 Any hope that all case III maps have
AT>0 was destroyed by a counterexample of Johnson (1986) who constructs a
transformation with sensitive dependence to initial conditions but without any
absolutely continuous invariant measure and hence with AT = 0

Still one might hope that the following conjecture is true for each .S^-unimodal
T there is a probability measure vT on [0,1] such that vT =
weak-Inn,,..^ n"1 YX~=o m ° T~k This conjecture is true in the following situations
In case I, vT is the uniform distribution on the unique stable periodic orbit, in case
II, it is the unique invariant probability measure on the attractor, and if AT>0 in
case III, vT is the unique absolutely continuous invariant probability measure of
positive entropy In all these cases \ log | T'\ dvT = \T For case I this is nearly trivial,
for case II this was proved in Keller (1989b), and if AT > 0, this is just the Ergodic
Theorem applied to the function log \T'\ In general, however, the above conjecture
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turns out to be hopelessly wrong if AT = 0 Reinterpreting Johnson's construction
for our canonical Markov extensions the following is proved in Hofbauer and Keller
(1990)

Remark 2 The family of quadratic maps contains infinitely many examples of maps
with sensitive dependence to initial conditions, Ar = 0, but without a natural measure
There are also examples where Ar = 0, a natural measure vT exists, but where vT

has positive entropy

There is also a positive result in this direction intimately related to Theorem 2
For a probability measure v on [0,1] let

w*(v) = ] weak accumulation points of I — £ v° T~k I \,
[ \n k=o / n>o)

and for a set M of probability measures on [0,1] denote by concl (M) the convex
closure of M in the weak topology In § 4 we prove

THEOREM 4 w*(m) c concl (w*(Sc)) and a)*(Sx) c concl (a>*(8c)) for Lebesgue-z. e
x € [0,1], if T has no finite absolutely continuous invariant measure of positive entropy

The quantities A(x) and T(x) measure to some extent the degree of unpredictability
of the orbit of x, see Shaw (1981) for a discussion However, A(x) = I{x) = 0 for
m-a e x does not exclude the possibility that each single trajectory is very compli-
cated It only means that there are so few essentially different trajectories or itineraries
that the amount of information (in the sense of Shannon) gained by realizing the
first « symbols of a particular itinerary is of the order O(M) Indeed, Remark 2 shows
that there are situations where m-a e orbit is generic for the same asymptotic
distribution vT of positive entropy, and it will turn out in Theorem 5 that at the
same time m-a e itinerary is very similar to the itinerary of c

Another measure of the unpredictability of a trajectory - its algorithmic complexity
K(x) (with respect to a finite partition of the phase space)-was introduced by
Brudno (1982, 1983) It is not based on Shannon's statistical concept of information
but on the amount of information needed in order to construct an individual itinerary
Roughly speaking, for unimodal maps complexity is defined as follows we fix a
universal Turing machine whose alphabet contains the symbols L, R, 0,1 Following
Kolmogorov, the complexity k(w) of a finite word w over the alphabet {L, R} is
defined to be the length of the shortest word over {0,1} which, given as an input,
causes the Turing machine to produce w and nothing else as output For an infinite
L, /^-sequence W = W|W2H>3 we then define the complexity K(w) =
hm^oo /j-lfc(w, wn) The value of K(w) is actually independent of the particular
universal Turing machine chosen for reference, see Brudno (1983) Next, given a
unimodal map T on [0,1] with critical point c, we define the itinerary w(x) =
W\(x)w2(x)w3(x) of a point xe[0,1] by w,(x) = L if T'x<c and w,(x) = R if
T'x>c Finally let K(x) = K(w(x)) It is not hard to see that K(Tx) = K(x) For
a probability measure v on [0,1] define /„(*) as in (1 11) but with respect to the
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measure v instead of m The two basic relations between K(x) and /„(*) are (cf
Brudno, 1983)

7,,(x)/log 2< K(x) for v-a e x, if v is a probability measure on [0,1], (1 13)

/C(x)<sup{/i,(T)/log2 veu>*(8x)} (114)

We sketch the proofs of these inequalities in § 4, where we also prove

THEOREM 5 Let T be Sf-unimodal
(1) 7/AT>0, then K(x) = AT/log2 m-ae
(2) 7/Ar<0, then K(x)<K(c) m-ae More precisely, K(x\w(c)) = 0 m-ae, te if

the Turing machine has a second (read only) tape on which w(c) is stored and if
it can use this information freely, then the length of the shortest 0,1 -input which
causes the output w,(x) wn(x) is of the order o(n)

(3) If K(c)>0, then Thas sensitive dependence to initial conditions

As a matter of fact, the construction of Hofbauer and Keller (1990) shows that
there are examples of maps in the quadratic family for which \T = 0 but K(c) > 0
1 have no idea, however, whether \T = 0 implies K(x) = 0 for m-a e x

2 Hopf decomposition and ergodic properties of regular Markov systems
Let (X, T) be a regular Markov system as described in § 1 with g X -* U+ as in
(11) For n>0 set gn(x) = g(x)g(Tx) g(T-lx)
Proof of Theorem 1 We start by observing the following consequence of (1 5) for
each z e X and each compact neighbourhood N of z there is a constant c = c(z, N)
such that

c"1 ^f(y)/f(z) < c for all y e N and

Let feWnLl Then J Pkfdm<\fdm<<x and O s P ' / e J T n L l by (16) for all
fc>0 Hence,

Pkf(z)<c(z,N) m(N)"1 \fdm<oo uniformly in k (2 1)

Observe that 0<Snf = Y,"kZ
l
oP

kf£%nLl for all H > 0 Fix ie / and x o e Z e "3/ for
some Z s X , , and consider any yeZ In view of (1 5), Snf{y) = 0 if and only if
SrJ(xo) = sn=0 Hence, if sn>0 for at least one n, then 0<hmn^cc s~iSnf(y)<<x>
Next consider z e T~'y for some j > 0 and fix a compact neighbourhood N of z
By (2 1)

= " l ' I (/ gt)(ii)+ V Pkf(z)
fc=0 »eT z k = n-j

c(z,N) miN)-' fdm• • J -
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Since z can be any point in B, and since sn > 0 for some n,

/ (z) = hm~ s-n
lSJ(z)< oo

n-»oo

for all ze B, / > 0 on X, follows by interchanging the roles of y and z
As s^SrJixo) = 1 for all n, (15) implies that the sequence {s~xSJ) Xx, has

nontnvial u c s accumulation points, and in view of (1 3) all these accumulation
points belong to 3€

If (sn) is bounded, then / = hm, ,^ s~'Sn/ pointwise and hence also u c s on X,,
1 e / Xx, £ %C As supn Sn/<supn 5n /<oo , P is dissipative on X, in this case

So assume from now on that (sn) is unbounded, l e P is conservative on X, By
(2 1), 5n = O(n) Our first remark is that m(X,\Y) = m(X,\T~lX) = 0, whence X,
is maximal Let U = X,\T~1X As T is not defined on U, all sets T~kU (&>0) are
pairwise disjoint Hence \ v Snfdm =XfcIo l T ' kuf^m—lf^m <°° f°r a " "» i e

J u supn Sn dm < oo, and since P is conservative on X,, it follows that m( £/) = 0 Now
m(X,\yco) = 0, because X, is maximal and T is nonsingular with respect to m

Let 4> be any u c s accumulation point of (s~'Sn/) ^ x We saw already that
<f>e9€ Now we prove

P(f> = <f> on X, if <£ = hm (s~}Sn/) Xx, (2 2)

(Observe that if xeB,\X,, then JC belongs to a nonmaximal X,, whence
limJ^co5~1Snj/(x) = 0.) We interpret px =(g(y) ye T~lx) for each x as a o--finite
discrete measure on T~xx By Fatou's Lemma and (2 1) we have for xeX,

P</>(x)= I (hm s-;Snif(y))g(y)

^lyn^n,1 I_, 5n/(y) g(^)

= hm s ̂ ' PSnf( x)

=Um s-\sHf(x) -f(x) + p"

Hence P<f> — <f> on X,, since P is conservative on X,
Let Sf, = {/i € 5if n Li, Ph = h,jhdm = 1, and ft, = 0 outside X,} We claim

card(^ , )< l (2 3)

In order to prove this, let \p e Vm be continuous, </* = 0 outside X,, and suppose that
Pip = il/ and $ipdm=0 By positivity of P we have Pi/';h> i/>±>0, and since
JPk/r* dm <!(/»* dm, it follows that PI/»+ = I/(+ and Pi/f~ = i/r, where iA+, i/T are
continuous As U n a 0 ^"-^o is dense in X,, this implies i|r+ = Oon X, or i/»+>0 on
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X, and the same for ip~ Hence i/» = 0, because J <p dm = 0 and supp (m) = X Now
(2 3) follows immediately

We consider the case card (^,) = 1 first Let h, be the unique element in 3F, h,>0
on X, by (1 7), and a variant of Hopf's ergodic theorem (Theorem 3 3 12 in Krengel,
1985) implies

hm — Snf= | fdm ft, m-ae on B,
n-»cc n

Since the sequence (n~xSnf) xx, is u c s relatively compact, the convergence is
also in the u c s sense on X, In particular, sn/n-*\fdm ft,(x0) and hence

hm —— = ' =f m-ae on B,
"^°° sn h,(x0)

Now the 'only i f part of assertion (b) and the ergodicity of the system (T, ft, dm)
follow from (14)

Suppose next that &, = 0 Because of (1 5) and (2 2) we still have at least one
P-invanant u c s accumulation point <t> of s~*Snf)xx, (which is not integrable in
this case) In view of our assumptions in § 1 we can find Z c X , , Z e <3/n for some
n > 0 such that cl (Z) is compact and m(Z)<oo Consider the first return map
Tz Z^Z, Tz(x)= Tnix)x, where n(x) = mm { M > 0 T"xeZ} As P is conservative
on X,, n(x)<oo for m-ae xeZ and Tz is m-ae defined It is routine to check
that (Z, Tz) is a Markov system Restricting also m and $f to Z it is not hard to
see that one obtains a regular Markov system with associated transfer operator Pz

It is well known that P<f> = (f> implies Pz{(j>\z) — <t>\z, and since cl (Z) is compact
and m(Z)< oo, <j>\z is m-integrable Hence the above considerations apply to the
system (Tz,4>\zdm), and the ergodicity of this system follows Now the system
(T, 4> Xx,dm) must also be ergodic, since \^Jks0 TkZ = X, mod m In particular,
h, = <t> is the unique (up to constant multiples) P-invanant density which does not
vanish on X, It satisfies Ph, = h,, h,>0 on X, and ft, = 0 on X\X, We fix the
arbitrary constant factor by requiring h,{x0) = 1 Then ft, is the only u c s accumula-
tion point of (s^Snf)x\,, i e this sequence converges u c s to ft, = / Xx, Now the
' i f part of (b) follows from Birkhoff's ergodic theorem, which asserts that «~'Sn/-*0
ft, dm-a e

For the following considerations let ft, = Pft,, where ft, can be integrable or not
If <t>eL'm, then

h, Is-lSH(f> = s-lSnf {Sn<t>/SJ)-*h, I <t>dm/\ fdm m-a e on X,

by the Chacon-Ornstein Theorem (see Theorems 3 2 7 and 3 3 4 in Krengel, 1985)
Let dfi, = h, dm and denote by T* the dual operator of T L^ -» L^ Then the
pointwise dual ergodicity of (T, fi,) follows, because Tf <j> = P(<f>h,)/h,, as is easily
checked This finishes the proof of (a)

We are left with the proofs of (c) and (d) For i^eZ.^, 0 <(/»</»,, let i£ =
h m , , ^ P > As P > < P " / i , < / i , for all n, we have ^ < / i , , whence Pk4i<h, for all
k LelPxk = (gk(y) yeT~kx) As I , e T- i x h,(y)gk(y) = Pkh,(x) = A,(x)<oo, we have
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0 < P"i/f < ft, e Lj,x t for all n and x Hence, by Fatou's Lemma,

>hnT I (gt » 0 )

(2 4)
= hm Pn+k<J,(x)

Let /= Pij/ - <jj Then/> 0 and £^=0 P
kf= hm, , ^ P > -i£ < ft, < oo As P is conserva-

tive on X,, this implies / = 0 m-a e on X,, I e Pij/ = ij/ m-a e on X, In particular,
i£ = c ft, for some c > 0

Now suppose additionally that i/> e 5if Fix e > 0 and K c X , compact with m(K) <
oo Because of (1 5) there is 5 > 0 such that | log/ (x) - log/ (y) |<e whenever x, ye K
with d(x,y)<8 and fe 36, f>0 Let XlX, , X,Pi be the cyclic decomposition of
X, There is je{0, , p , - l } such that x0eX,j By assumption, there is some
N = kp, > 0 such that K n X,} is contained in the S-neighbourhood of T~Nx0 Hence
there is some finite subset of T~Nx0 the 5-neighbourhood of which contains K nXu

Choose positive integers rn such that ij/(xo) = hmn^cc Pr"+Ntl/(x0) and such that
hm^oo Pr"ip{y) exists for all y e T~Nx0 Let i/»* = hm, ,^ Pr-ijj Then ip* < ijj, and, as
in (2 4),

^ = ^(x0) = hnT PN(Pr^)(x0) < P>*(^o) =s P ^

ie PN(i^-i/'*)(xo) = 0, and as «̂  — i/r*>0, this implies >jj= 4i* = \\mn^x P'"\\i on
T~Nx0 Hence, for large n,

4idm<eie P'-ijj dm<e2c

his yields

Jx,, J

ty dm

In the limit e^O and K/X this yields

\ 4>dm (2 5)
Jx,, J

In particular

— ft, dm = c ft, dm = î  dm s if/ dm
P. J Jx,, Jx,, J

If J ft, dm = oo, this implies c = 0, l e hmn^oc P"^ = 0 pointwise and hence also
u c s This proves (d)

If J ft, dm < oo, choose ip such that i/> = 0 outside X,} By dominated convergence
$ (P"if/-ij/)+ dm ̂ >0 as n^> oo Hence

0< \P"p'^-4>\dm
Jx,,

= 2 I {Pnp>ip-4,y dm- I {P"p'iii-4>) dm
J X, , J X, ,
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<2 (P"'V-</0+dm+ $dm- \ 4, dm

<2 (Pnp^-$)+ dm by (2 5)

-»0 as ,

which proves in view of (1 4) that (Tp; h, \x,, dm) is exact In order to finish the
proof of (c) observe that for each k = 1, ,p, the system (Tp; h, Xx,(+ktmoa dm)
is a factor of (Tp; h, Xx,, dm) via the factor map Tk XhJ-> X,(J+fc)modp , whence it
is also exact •

In the remainder of this section we prove some general results relating the existence
of an integrable invanant density to certain growth-numbers and an entropy-like
quantity of the underlying system These results are basic for the proof of the more
specialized Theorem 3

For W c X and Ue<2t let

n[W,U] = {Ze% Z^U and 3xeZ with Fxe W (j = 1, , n-1)},

Nn[W]= sup card <&„[W, U], and
(2 6)

h*[T, W] = hm-log Nn[W]

Finally, for a T '-invariant subset ft of X, let

M7|n) = inf{/i*[r,n\*:] K^x compact}

might be called the topological entropy at infinity of the system (ft, Tjn)

PROPOSITION 1 Suppose (X, T, m, 3€) is a regular Markov system with
supCe^"i(C)<oo Let Fn X-»(0, oo) be a sequence of measurable functions such
that r =sup{\zFndm n > 0, Z e <3/n} < oo / / ft = T"'ft is such that
(l) P is dissipatwe on ft, or

(H) There is no m-integrable P-invanant density on ft and there is xoeft such that
n<=ci(\j^0T-"x0),

then

lim — log Fn(x)s hx(Tia) for m-a e xeft

We note the following corollary
COROLLARY3 Suppose (X, T, M, ffl) is a regular Markov system with supCe? m(C) <
oo and ft = T"'ft is a measurable subset of X If lim supn^x-n~l log m(Zn(x))>
"x(T\n) or lim supn^co n"1 logg^'(x)> hx(T\n) on a subset of ft of positive m-
measure, then T is conservative, and if ftScl(Un20 T~"x0) for some xo€ft, then
there exists a T-invanant probability measure /J.« m with dfi/dm e 3€, supp (fi) £ ft,
andhli(T)>0
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Proof Let Fn(x) = \/m(Zn(x)) or Fn(x) = l/gn(x), and observe that \zg~n
l dm =

J P"(xzgnl) dm = J;t"T»zdm<supC£X»i(C)<oo Now, in view of Proposition 1 and
Theorem 1, each of the two conditions implies the assertion of the corollary •

Proof of Proposition 1 We use the notation of Theorem 1 Let e > 0, 5 > 0 and fix
KcX compact such that h*[T, ft\K]< ftco(7]n) + 5 Remember that each / e 3€ is
bounded on K in view of (1 5) Hence, if P is dissipative on X,, and if Z e <3/fc has
finite m-measure, then {JJn^kP"xz) Xx,£% and Xn£fc w(Zn T ~"(K nX,)) =
IKOX, I^ait p"A'z^'«<00, such that Xn;a0^Kr,x,(r"x)<oo for m-ae x e Z Since we
assumed that there is some k with m(Z) <oo for all Z e %k, it follows a fortiori

l i m - V ^nx,(TJx) = 0 fo rm-aexeX, (2 7)

On the other hand, if P is conservative on X,, then assumption (n) of the proposition
together with Theorem 1 guarantees the existence of an infinite ergodic absolutely
continuous invariant measure //., on X,, and (2 7) follows from Birkhoff's Ergodic
Theorem In any case, (2 7) holds for a e x e ft As K is compact, there are only
finitely many X, with K n X, ̂  0 Therefore there is N = N(e, 8) such that

m(a\ANa)<e, where ANS = | x e f t I ^K(TJx)<5n for all n > N \ (2 8)
I J=0 J

Let hs = h*[T,n\K] + S Then

JVB[n\K] < e^" for large n (2 9)

Denote by S(5, n) the family of all sets M c {0, , « -1} with card (M) < 5n Given
1/ and n^JVwe have

{ Z e » n 2 c ( / , Z n A N ^ 0 } c (J B(M,n,U), (2 10)
MeS(Sn)

where B(M,n, U) = {Ze<&n Z<=U and 3 x e Z sth ; e M » T J x € K } Fix Me
S(5, n) and denote the elements of M u {0, w} by 0 = fco< fc, < <kr = n Then
r<card (M)+ 2< 5«+2 and

card(B(M,n, ,
1 = 1

<F] e^
('c'-A:-) by (2 9)

= e
hs"

Hence, by (2 10),
U, ZnANS5*0}<card(S(8,n)) eh°"

for large n, where H(8) = - 5 log 8 - (1 - 5) log (1-5) , and we used Stirling's for-
mula to estimate card (S{8, «)) Now

I <= u, Zn A
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which allows the estimate

Now the Borel-Cantelh Lemma yields

hnT - log Fn(x) < tf(S) + 25 +
n^oo ft

for m-a e x e U n AN s, and since (/ e <3/ was arbitrary, this holds for m-a e x e AN 6

As m(fl\i4Ng) < e (see (2 8)), we obtain the assertion of the proposition in the limit
e , S - 0 •

3 Canonical Markov extensions for interval maps
Throughout this section let T [0, l]-»[0,1] be a piecewise monotone Cx-map with
a finite number of critical points, l e there are 0 < a , < a 2 < < a N _ , < l such that
T'{a,) = 0 for i = 1, , JV-1 and T'(x) # 0 otherwise Let a0 = 0 and aN = 1 Then
7|[a,_,,a,] is a homeomorphism from [a,_,, a,] to [7a,_,, Ta,] (i = 1, , N)

In a series of papers, Hofbauer (1979, 1980, 1981a, b, 1986) constructed certain
countable state topological Markov chains for such maps (called Markov diagrams),
which admit the given system as a topological factor He showed how knowledge
about the chains can be turned into knowledge about the asymptotic topological
properties of the transformations T Inspired by Hofbauer's construction, we used
a variant of the Markov diagrams (called canonical Markov extensions) to study
Ruelle-zeta-functions of piecewise analytic interval maps (Keller, 1989a) The main
advantage of the extensions over the diagrams is that they are locally smooth with
the same degree of smoothness as the underlying transformation T We shall use
these canonical Markov extensions (more exactly, a technical variant of them) to
construct a regular Markov system very closely related to the given map T

Let £ be the partition of [0, l]\{a0, a,, ,aN} into maximal open intervals, and
define %£ recursively by

(0, l ) e ^ and (3 1)

if D e m a n d leg with Dnl*0, then T ( D n / ) e ^ (3 2)

Let X be the disjoint union of intervals from %?, formally

X = {x = (x, D) D e m a n d xeD}

Define 7T X->((), 1) and TJ> X ^ ^ b y

n(x, D) = x, TT,(X, D) = D

With the discrete metric on 3£ and the usual distance on (0,1), X becomes in a
natural way a metric space, whose subsets TT^'D can be identified with the subsets
D of (0,1) TT~,1D must not be confused with n~'D, however Denote by 36 the
partition of X into the sets TT^'D

Since the Lebesgue measure m is defined on each D e 9£, it carries over immediately
to X, where we denote it by m (m(M) = m(-n-M) for measurable M c TJ-^'D) The
corresponding cr-algebras of Lebesgue measurable sets are denoted by 98 (for m)
and J (for m)
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Let y = X\7r"'{a0, , aN}, and denote by % the partition of Y into maximal
open intervals Obviously $ = £ v TT~X£ Indeed, $ = U* & 0 $"" . where $<0) =
{*>'(<), 1) nw- 1 / /e£}and <3/(k+1> = ®<fc>u S

("+ n with

Observe that usually ®<(c+l)n $ ( M # 0 In fact, it may happen that &k+1)c<&lk\
in which case 9U is finite

The map T lifts to the following transformation T Y^>X
f(x, D) = (Tx,C) where C = T(Dn /) for that / e £ which contains x

The basic relation between T and T is

7 r of=To 7 7 - (33)

Let Z = 7rS1Dn7T~1/e'3/, D e f , / e f Then T(TTZ)= T{DnI)e %, le (X, f)
is a Markov system for the partitions 3f and 'S'

Suppose (x, D)6 yn(=n*Io t " ^ ) Then fk(x,D)e Y for fc = 0, , n - 1 , le
Tkxi {a0, , aN} for k = 0, , n - 1 , and it is easily checked that

fn(x,D) = (T"x,Tn(DnZn(x)), (3 4)

where Zn(x) is the maximal interval in [0, l]\Ufc!o T~k{a0, , aN} that
contains x

In particular, if x£[_)k!,0 T~k{a0, , aN} and if C^\n^0Zn(x) = {x}, then for each
pair x^^eTr^ 'x there is neM such that T"x, = T"x2 Thus, if f~]nz0Zn(x) = {x}
for all x ̂  Ujcao ^ ^{flo. , ON) and if X, and X, are irreducible subsets of X with
TTX, n TTXJ ̂  0 , then there is an irreducible Xk with X, < Xfc and X} •< Xk

Another simple consequence of (3 3) and (3 4) is

LEMMA 1 (See Lemma 1 in Keller, 1989b) Let T and f be as above, Az$) AH
identities are to be read modulo null sets Then
(a) T~'A = A if and only if TT~*(TTA) = A and T~\vA) = nA
(b) Aer\nsOf~"^ if and only if TT~\TTA) = A and T M E P I , , ^ T~"^

Quite generally, if $ (X,, m,)-»(X2, m2) is a nonsingular, measurable map
between two measure spaces (l e m2{A) = 0=$ml(<$>~lA) = 0), we can define the
transfer operator P* Vmt -* Lx

m^ by

j P*/ gdm2=\f (go<p)dmi forallgeC; (3 5)

P<t, is a positive, linear operator with ||P4,|| = 1 If X, has an at most countable
measurable partition such that 4> restricted to each element of the partition is
bijective, bimeasurable and nonsingular forwards and backwards, then

P*/(*)= I ~ ~ , (3 6)
Je*'v<I>'(j')

where <S>' = d(m2
o<&)/dml is the Radon-Nikodym derivative of <t> with respect to

m2 and m. In particular, P<p extends naturally to the space of finite-valued measur-
able functions if the partition is finite

For 4> = T or 4> = T we obtain the Perron-Frobemus operators corresponding to
T and T respectively T and T" are just the absolute values of the usual derivatives,

https://doi.org/10.1017/S0143385700005861 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005861


Exponents, attractors and Hopf decompositions 733

and

f ' = r ° 7 r and TT'=\ (3 7)

Obviously

P^Pf = P^t=PT^=PT°P^ (3 8)

LEMMA 2 Let T and T be as above

(a) If PT IS dissipauve, then so is Pf
-A

(b) If Pf is conservative on Ac. X, then so is PT on vA
(c) If Pfh = hfor some heVA then PT{P,h) = pji, P^heLl, and if Theorem 1

applies to T, then the system (T, Pji dm) has positive entropy

Proof (a), (b) and the first two assertions of (c) are immediate consequences of
(3 7) and (3 8) Let dp. = hdm, d/x = Pjidm By Theorem l(c), PlBa0

 T"® 1S fimte

mod /2, and by Lemma l(b), its cardinality coincides with that of P)n&0 T~"58 mod fi
Hence (T, p) has positive entropy •

A, .A

Suppose now that STT<0 As T'=T'° ir, this implies ST<0, and in view of the
discussion after Theorem 1, (X, T, m, $f) is a regular Markov system, where "M is
defined as in (1 8) In particular, Theorem 1 and Proposition 1 apply to this system

In § 1 we introduced the relation -» on $, namely U-* V if F c TU $ together
with -» is a directed graph '& = ('<!/,->), and in order to obtain knowledge about T
from information about T provided by Theorem 1 and Proposition 1, we must have
a closer look at $ We claim

If (c ,d )e$"° then c,de(TJa, 0<i<JV,O<j<H} (3 9)

For k = 0 this is true by definition, and if it is true for some k > 0, then it must be
true also for (c, d) = f(U)n «•""'/€ ®(lt+1), where l / e $ ( M , / e £ This reasoning
also shows that there are at most N +1 maximal irreducible subsets of X, one
corresponding to each a,

A. A. *.

Proof of Theorem 3(a) Let X,, , Xp_, (p > 1) be those irreducible subsets of X
on which Pf is conservative with a unique integrable invariant density h}, B, =
LUo T"X, 0 = 1, ^, p -1) ^ Bp = XXU,":,' % Then P t has no integrable
invariant density on Bp, and T^BJ = BJ for j = l, ,/> Set XJ = TT(XJ) and B, =
TT(B,) 0 = 1, , p), d/j.j = Pnhj dm (j = 1, ,/>-1) By Lemma 1, the B3 are dis-
joint, measurable, T-invanant subsets of (0,1) (modulo m-null sets), and for
j = 1, ,p — 1, fjLlx = «i|Xi and Bj = [Jns0 T~"rnX1 modulo w-null sets

In order to apply Corollary 3 we prove hx( Tĵ ) s hx( T) = 0 for all j The inequality
is trivial For the proof of hx( T) = 0 we need a result of Hofbauer (1986, Corollary
1 to Theorem 9)

Let Nn[W] be as in (2 6), and set Xtk) = \Jue v
k> u T h e n

hm Tim n ' log Nn[X\Xa)] = 0
A.-

(For an earlier version see Hofbauer, 1979, Lemma 13 A generalization of this
result, closer in notation to the present paper, can be found in Keller, 1989b )
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Now fix e>0 Choose keN and C>0 such that

N n [X\X ( M ]<C ef" for all n (3 10)

We consider compact subsets K of X such that for each of the finitely many U eWk)

the set U\K consists of two (small) intervals both having one endpoint with U in
common Fix leN Then K can be chosen such that card ^[XVX, t/] = 2 for all
U e $<(t) and 7< / Subdividing the integer interval {1, , n} into subintervals of
length / (the last one may be shorter) and observing (3 10), we obtain the following
estimate

( r - i \ i + n /

max ] N,[X\X"°] max card %_j[X\K, U] \ I

Taking logarithms on both sides and dividing by n this yields in the limit n -* oo

h*[f, X\K] ^ log 2C + e

In the limit /-»oo and e^O we obtain hoc,(T) = 0
Now Corollary 3 applied to (X, T) implies in view of Remark 1

A(x) = h5r-log|(T")'(x)|=h5r-log|(fn)'(x,(0,l))|
n^oc n "^x n

1
= hm-logg-1(x,(0, l ) )<0 form-ae xeBp,

whereas the ergodic theorem applied to the system (T,fij), fij = hjm, and to the
function log \T'\ implies

A(x)= hm -log|(T")'(x)|= hm -log \(f"Y(x, (0,1))|

= log \T'\ o ir hjdm=\ log \T'\ PJi,dm

= \o%\T\dy<.} form-ae xeB, (7 = 0, ,p-l)

Hence max {A(x), 0} = 0= \TP form-ae xe Bp, and max {A(x), 0} = J log |7"| d^,=
A \j form-ae xeB, , j = 0, , p - l

/(x) = 0 = Arp for m-a e xe Bp follows from Corollary 3 I(x) = fcM (T) for m-a e
xeBj (7 = 0, ,p —1) is a consequence of the Shannon-McMillan-Breiman
theorem and the martingale theorem, because £ is a finite generator for T

h^iT) = h^(T, {) = -hm -log fiJ(Zn(x))+ hm -log^±(x)
n^x n n^x n dm

= hm—log m(Zn(x)) foru-ae
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and as B, = U n 2 o T"XJ, the same is true for m-ae x e B , The identity h^(T) =
J log 1T'\ dfij is the Rohhn formula, and

m,(Z) log m,(Z) = - I - log m,(Zn(x))

(x)</m,(x) = AMj(r,f) as«->oo,

because the sequence (n"1 log m,(Zn(x)))n>0 is uniformly integrable and converges
m,-a e to 7(x) = h^T, £), cf Lemma 9 2 6 of Krengel (1985)

To finish the proof of (a) of Theorem 3, we note that /iM/( T, £) = h (T) > 0 for
j = 0, , p — 1 The positivity is a consequence of the fact that P l n a 0 T~"8ft is finite
mod /ij (see Lemma 1 and Theorem 1) For the identity h^iT, f) = /iM(T) we must
show that f is a generator for the system (T, /*,) Suppose this is not the case Then
T has a homterval contained in supp (/A,) = TTX,, and a fortiori also T has a homterval
contained in X} But we showed in Remark 1 that this contradicts the conservativity
of Pf on Xj

Before we can turn to the proof of Theorem 3(b), we need some more information
about the graph "̂  = ($,-») for unimodal T The following lemma can be extracted
from Hofbauer (1980, §1) and Hofbauer (1981, end of §2) Since Hofbauer's
notation differs largely from ours, we include its proof

As a notational convenience let (a, b) denote the interval of points between a
and b, no matter whether a < b or b < a, and define x for x e (0,1) by Tx= Tx and

LEMMA 3 Suppose T is unimodal, and the orbit of c is not eventually periodic Let

c_,=inf{x<c (Tky{y)*0Vye{x,c)} (fc=l,2, )

(a) There is a sequence (ik )k z2 of integers, 1 < ik < k, such that %£ = { Vk k S: 0} where
V0=(0,1), V, = (0, Tc), and Vk = (Tkc,T'^c) (fc>2) Tk maps (c.k, c)
diffeomorphically onto Vk ( /c>l) ik+l = ik + \ if ci. Vk and ik+1 = 1 i / c e Vk If
ce Vk, then Tk{c-ik+l)) = c Observe that §6 is in a natural way isomorphic to
{Vk = Vkx{k} k>0}

(b) Ifc£Vk, let Dk=Vk ( k > l ) IfceVk, let Dk =(Tkc, c)x{k} ( fca l ) , Ek =
(c, T'^c) x {k} {k > 2), and £, = (0, c) x {1} Then <3/(0) = {(0, c) x {0}, (c, 1) x {0}},
andfork>l, &k) = {Dk} if c£ Vk and $>{k) = {Dk, Ek} ifce Vk

(c) Let 0= Ro< Rt < R2< be the finite or infinite sequence of those nonnegatwe
integers k, for which ce Vk+I There is a map Q f^-»ftJ0, Q(J)<J, such that
Rj — R, , = 1 + RQ{J), and $ has the following four kinds of edges
(1) D-*E,andD->DlifD$m

(2) 4 - 4 + 1(^1),
(3) DR^ERl+lforallj>l,
(4) ER + t^
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(d) Ifn = Rj + l and f"x e VRj+i, then xeV0orxe VRi_R<?(i) for some i with Q(i) <j
and 77xe(c_n, c_n)

Proof (a) (0,1)€3f by (3 1) and (0, 7c)ear by (3 2) As c_, = 0, T maps (c^,c)
diffeomorphically onto (0, 7c) Next, {T2c, Tc)e2? by (3 2), and T2 maps (c_2, c)
diffeomorphically onto V2 = (T2c, Tc) If c e V2, then clearly T2(c_3) = c So let z2 = 1
and suppose there are i2, , ik with properties as in (a)

If d Vk = (Tkc, T'"c), then Vfc+1 = (Tk+1c, r»+lc)e % by (3 2), I e «k+1 = jk + l
Also (Tk+*)'(y)^0 for all }>e(c_k,c), whence c_(k+1) = c_k and 7"k+1 maps
(c_((c+1), c) diffeomorphically onto Vk+l

If ce Vk, then Vk+1 = (Tk+1c, Tc) and {T'*+ic, Tc) are in a? by (3 2), I e ifc+1 = 1
Obviously Tk+1 maps (c_(k+1),c) diffeomorphically onto Vk+, Observe that k =
Rj +1 for some Rj from (c), J > 1 We must show that (T'k+Xc, Tc)e X, and in fact
we will show a bit more, namely that

ik = RJ-RJ.l = RQ(j)+l (3 11)

for some integer Q(j), 0<Q(j)<j Let m = RJ_1 + l Then ci. V, for i =
m + 1, , fc-1, whence ik = k — m = RJ-RJ_l (3 11) follows once we have shown
that ce V,k = T'l(c_I;,, c) But suppose this is not the case Then c_(1(,+1) = c_Iyi As
Tm+ll(c-ic, c) = Vk = (T'"c, Tkc) and as Tm+'"(cHk+l)) = c by inductive hypothesis,
it follows that Tm+l"(c.k,c^k+l)) = (r%c), whence Tm(c_k, c_(fc+1))c
(c_(,,+1),c) = (c_,,,c) Hence V,, = r'i(c_llt, c)2 r ^ ' f c j , c_(fc+1)) = (TV, c), a
contradiction to c & V,k because the orbit of c is not eventually penodic

In both cases, if ce Vk+l, then r'c+1c_(k+2) = c This finishes the inductive proof
of (a)

(b) is an easy consequence of (a) and of the definition of $, and (c) follows from
the proof of (a) and (b) and from (3 11)

For the proof of (d) we use the structure of 'S as described in (c) We simply list
all possible backwards-paths of length n in 8 starting at DR + l or £R + 1 n = Rj + 1
steps may either lead straight down to Vo, or there is some minimal m</i such
that at the mth step back we arrive at some ER + X where i is such that Q(i)<j As

m = RJ + \-(RQU)+l) = RJ-RQll),

we have in view of n = Rj +1

n — m = RQU)+1 = R, — /? ,_!,

such that xe VR-R(?|i) So we end up with x in Vo or in DR l+,, cf (3 11) In the
first case, 7rxe(c_n, c_J by (a) In the second case, irxe (c_(R<?(M+2), c_(R<?u)+2|) as
fR^>+ 'xe£R + 1 = (c, TRo>o+i

c)x{R, + \}, and similarly nfR°<"+Ijce
( c . , , . ^ . , , , ^ , . , , , , , , . , , ) , such that irxe(c_n, c_n) D

Remark 2 If T is unimodal, and if c is eventually periodic, then & and $ are finite
The numbers 0= R0<Rl<R2< can be defined as before, however

Proof of Theorem 3(b) Suppose the orbit of c is not eventually periodic By Lemma
3(c), *3/ either has an infinite chain of finite irreducible subsets

X ,<X 2 <X 3 < (3 12)
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or a finite chain of irreducible subsets

X,< <XS, (3 13)

where all sets in the chain but the last one are finite (By a finite irreducible set we
mean an irreducible set which is the union of a finite number of equivalence classes
Note also that the numbering X,, X2, has nothing to do with the numbering
used at the beginning of the proof of Theorem 3(a) )

If the orbit of c is eventually periodic, then $ is- finite, and it is easily seen that
there is a finite chain of finite irreducible sets as in (3 13)

In case (3 12), Pf is dissipative on all X,, whereas in case (3 13), Pf is dissipative
A. A, .A At

on X,, , Xs_!, but may be conservative on Xs, see Theorem 1 Let W be a finite
union of sets from $ We claim that in any case

m ( pi f "w\=0 if w does not contain a maximal irreducible set (3 14)
n=0 /

In order to prove this claim suppose first that W = X, for some nonmaximal X,
By construction of $ and by Lemma 3, there are le N and a compact K<=,W such
that T'( W\K) C UJ> , XJ AS Pf is dissipative on nonmaximal X,, (3 14) follows in
this case For general W we may now assume w 1 o g that W is contained in a
maximal component Xs but W^X, If Pf is dissipative on Xs, then a similar

A. A.

reasoning as above applies If Pf is conservative on Xs, then T is Lebesgue-ergodic
on Xs by Theorem 1, and (3 14) follows as m(Xs\W)>0

Hence, either Pf is dissipative on all of X, or m(X\Un5=0 T~"XS) = O In any
case, p = 1 in part (a) of the Theorem (cf the definition of p at the beginning of
the proof of that part) The rest of (b) is a consequence of the following Lemma,
which is a slight variation of Lemma 3 6 of Nowicki (1985)

LEMMA 4 Suppose T is Sf-ummodal and T"{c) # 0 Let

j y=T"y, «>

Then A(x)> \nfor m-a e x

Before we prove the lemma, let us see how it finishes the proof of Theorem 3(b)
and how it implies Corollary 2(4)

Observe that

A7r<A(x)<Ari fo rm-aex (3 15)

If Ari >0, then AT = A^i, and everything was proved in (a) If \n<0, then T has
a unique strictly stable periodic orbit {z, , T"~lz} which attracts m-a e x, and
A(x) = X(x) = A(z) = A,, = Ar for m-ae x, see Proposition II 5 7 of Collet and
Eckmann (1980) The remaining case is where 0< Aw<A(x)< A^i^O But then
A(x) = Â  = An =0 = Ar for m-a e x •

Proof of Corollary 2(4) Under the assumptions of this Corollary, A(x) > Â  >: log j8 >
0 for m-a e x, whence AT > 0
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Proof of Lemma 4 If T has a (possibly one-sided) stable periodic orbit, then
A(JC) = AW for m-a e x as noted above So suppose that T has no stable periodic
orbit For n > 1 let

3T={xe(0,l) T'x£(x,x) Vi = l, , n-l, T"xe (x,x)}

3Cn is an open set, and each connected component of it is of the form (u, v) with
T"u = u and T"v = v Moreover, T" is monotone on every component of X", in
particular dist (3T, c)>0 This is Lemma II 5 6 of Collet and Eckmann (1980)

Fix a component (u,v) of X" As #T<0 , |(T")'| has no positive stnct local
minimum on (w, v), I e

inf{|(rn)'(x)| *6(H,i5)}amin{|(T")'(«)|,|(r)'(o)|} (3 16)

Let M = sup{\T'(x)/T'(x)\ xe(0, l)\{c}} As T"(c)*0, we have l<M<oo (cf
Lemma 3 4 of Nowicki, 1985) Hence \(T")'(v)\ = \(T'"ly(Tv)\ |T'(tf)|s
Af KT^^XTu)! | T ' ( O ) | = M \{T")'(V)\, and (3 16) implies

log|(rn) ' (Jc) |>-logAf + /iAT fora l lxe^f" (3 17)

Suppose now that x G (0,1) is such that there are integers 0 = n0 < nx < n2 < with

(n,+ 1 -M,)^ooas i-»oo and T"xe^T" + ' " ' for all i > 0 (3 18)

Then

log|(T"-)'(x)|= t Iog|(r.-V.)'(TV.X)|

whence A(x) s l i m , ^ n;1 log |(T"')'(x)| > A,,
So we have to show that (3 18) holds for m-a e x By definition of 3C" and by

the fact that dist (3V", c) > 0 for all n, it suffices to show that

cew(x) for m-a e x (3 19)

One way to realize this is to note that ciw(x) implies A(x)>0 (see Theorem
II 5 2 of Collet and Eckmann (1980) or Theorem 1 3 of Misiurewicz (1981), which
is the original source) Hence, if m{x c£<o(x)}>0, then A r r > 0 by Theorem 3(a),
and T is Lebesgue-ergodic on X, (for Xs see (3 13)) In particular, nf"x comes
arbitrarily close to c for m-a e x, l e ce (o(x) for m-a e x, a contradiction

Another proof of (3 19), which does not rely on Misiurewicz's theorem, uses
Lemma 3(d) m-a e trajectory is unbounded in the sense that it leaves any finite
union W of elements of $t at some time (This is (3 14) ) In particular, for any
n = RJ + \ and m-a e x e ( 0 , l)x{0} there is k>n such that fkxeVn Thus, by
Lemma 3(d), Tk "x = nfk~"(x, (0, l ) )e (c_n, c_J As n = Rj + l can be arbitrarily
large, cew(x) for m-a e xe (0 ,1 ) , l e (3 19) •

4 Shadowing by the critical orbit
For the proofs of Theorems 2, 4, and 5 we need some finer information about how
typical trajectories of 5^-unimodal maps (typical in the sense of Lebesgue measure)
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are shadowed by initial pieces of the critical orbit During this whole section T is
an i^-unimodal map and T its canonical Markov extension In order to avoid the
distinction between finite and infinite Markov extensions, we also assume that c is
not eventually periodic If it is, Theorems 2, 4, and 5 follow easily from the work
of Misiurewicz (1981) or can be proved in a straightforward way along the lines of
this section

L e t £ = U ^ 0 4 , + i

LEMMA 5 For MeN and e >0 there are 5>0 and a compact set K c X such that
(l) x,y€Ze£,, i<M, \x-y\> e=$\T'x-T'y\> 8
(n) xe Vk\K, fcsM=>dist(7rx, endpoints of Vk)<8
(in) xeERi+l\K, Rj + l^M^f'xiE (i = l, ,M)

Proof Given M and e, there is 8 > 0 satisfying (l), because the monotone
branches of T are strictly monotone Now the existence of a compact K satisfying
(n) and (in) is obvious, since ce VR+1 for all j by definition, and since
X<=ERI+I\K implies that f'x is close to the endpoint TR«"J>+1+IC of VR<?(/)+1+I for
i = l, ,M •

Next we introduce the following first entrance stopping time For x e X let

T(X) = min {n > 1 T"x e E} if such an n exists,
(4 1)

T(X) = oo otherwise

Observe that T(JC)<OO unless Tn7rxef\=.i {c~k, C-k) for some n In particular, if T
has no stable periodic orbit, then (~]k^\ (c-k, 6-k) = {c}, and T(X) <OO except on the
countably many preimages of c Define recursively

T,(X) = T(X) and TB+1(je) = Tn(je) + T(fT"(*)(x)) (4 2)

Define also numbers pn(x) by

pn(x)=j if fT»{i)(x)eERi+1 («>1) (4 3)

Then

RP,1+,,x> = / W u , , + T(fT"(i)(x)) and P n + 1(x)>Q(P n(x)) + l (44)

Finally let

<Tn(x) = Tn(x) - (i?p,,(x) - Rp,,ii)-l) = Tntf) ~ ̂ <?(p,,(JE)) ~ ! S Tn_,(x) (4 5)

Then, skipping the argument x, we have

dn = rn+1 - <rn = T( f T-X) + UO(Pii) + 1 = Rp,,+, + 1 by (4 4), (4 6)

and

f^xeVj where j = R, + l and i = p n - l or Q(i) = pn-l (47)

Now Lemma 3(d) implies

r-irx = irf""x e (c_d,,, c_d;,) (4 8)

This describes exactly in which sense the critical orbit is shadowing the trajectory
of x from time crn to time rn+1

The following theorem relates the quality of shadowing of a typical trajectory
by initial pieces of the critical orbit to the classification of the Perron-Frobenius
operator Pf
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THEOREM 6

(a) Pf is dissipatwe if and only ifo-n+1 - an^ -»<x> as n -» oo m-a e
(b) Pf is conservative on the maximal irreducible subset of X with a nonintegrable

invariant density if and only if hmn_oo (crn+1 — <jn_,)<oo but o-n/n->oo as n->oo
m-a e

(c) Pf is conservative on the maximal irreducible subset of X with an invariant
probability density h if and only if hmn^oo o-n/n is finite m-a. e In this case the
limit is 1//2(E) where pi = h m

Proof In view of Theorem 1 it is enough to prove the 'only i f implications
(a) For M eN choose K <=i X as in Lemma 5 Fix x and suppose that

max{/?Pn, RPn+l}< M for some n By Lemma 5(in), TT"(x)eK Hence, if Pf is
dissipative, then hmn_0Omax {RPn, RPn+1}

s Af m-a e , and since M eN was arbitrary,

max{RPn, /?p,,+,}->oo as «-»oo for m-a e x (49)

By (4 5) and (4 6),

ov,+1 - o-n = r n + 1 - RPn+l + RPn+,-i - Tn+1 + RPn+l +1

= * P . + . - I + 1 ( 4 1 ° )

Hence (4 9) implies

o-n+\ - o-n-! = Rp,,+1-i + RPn -1 + 2

as M->OO for m-a e x

(b) If Pf is conservative on the maximal irreducible subset of X then T is Lebesgue-
ergodic on this set (see Theorem 1(3)), and there is some j > 0 such that for m-a e
x holds pn(x)=j and pn+1(x)=Q(j) + l for infinitely many n, l e
h m , , ^ max {RPn, RPn+,} < °°

Next observe that crn/ n -» oo will follow from rn/n-*oo So fix M e 1̂1 and choose
K Q.X as in Lemma 5 Let KM = U,=o ^ JK Birkhoff's ergodic theorem implies

lim— I A ' K M ( ^ ) = 0 f o r

such that

| T

lim — = lim — £

= hm—Y.XE\i<M(f'x) form-aex (411)

By definition, T'x e E if and only if i = Tk for some k So we consider
triplets u = TTk'x, v= TTkx, and w= TTk*'x, and we assume that T(U) + T(V)<M

By (4 4) and Lemma 3(c), RPk+l = RQiPk)+r(v) = RPk -
Rt>i -KQ<W-,> + T ( £ ) = T ( " ) + •>•(£)< M Hence, by Lemma 5(m),

weK or T(W)> M
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But if we K and r(u) + T(V)< M, then u, v, iv e KM = \J™=0 T'JK Therefore, if a
triplet u, v, w contributes to the sum £ ^ , XE\KM(T'X), then T(U) + T(V) + T(W)> M,
whence

i— n 3 -hm—<— m-ae

by (4 11) As M e N was arbitrary, this finishes the proof of (b)
(c) If Pf has an invariant probability density h on the maximal irreducible

component of X, then (T, fi.) is ergodic (/I = hm), and

hm—= hm—Y, XE(T'X) = fi,(E)>0 for m-ae x

by Birkhoff's ergodic theorem The observation that rn_, < o-n s rn (see (4 5)) finishes
the proof •

Proof of Theorem 2 In view of Theorem 3(b) and its proof we must consider the
two cases that Pf is conservative on some maximal Xs and that Pf is dissipative
on all of X In the first case, the trajectory of m-ae xeX finally enters Xs and
follows in the sequel the regime of the Lebesgue-ergodic Tî  In particular, m-ae
trajectory is dense in Xs, whence u>(x) = cl (TTXS) for m-a e x e (0,1) (observe (3 3))
As Xs is maximal, there is n > 0 such that X, = U ^ , , V* = U^ao * K By ergodicity
of T on Xs, V n n f ' t V n # 0 for some fc>0, whence VnnTkVn*0 This shows
that irXs = Ufcao TkVn is a finite union of intervals

Now consider the case where Pf is dissipative If T has a stable periodic orbit,
then o)(x) coincides with this orbit for m-a.e x, and nothing remains to show
(Proposition II 5 7 of Collet and Eckmann, 1980) Hence, we may assume that the
preimages of c are dense in (0,1), see Corollary II 5 5 of Collet and Eckmann,
1980) In particular,

yn =max{diam(Zn(x)) xe(0, l)}-*0 asn->oo (4 12)

In view of (3 14), m-ae trajectory in X is unbounded, le supn>0 Rpn(i) — °° for
m-ae x Fix such an x As dn = RPi+i + l is unbounded, it follows from (4 8) that
{T"c n>0}sa>(irx), whence

KT = c\{T"c n>0}c«,(x) fo rm-aex (4 13)

For the converse inclusion consider the sets

h = h(x)={j^0 3n>0sth TrfJxeZk(T"c)}

and

In view of (4 8), I"k £ Ik for all n
For all keN and m-a e x, [Jnsl Ik covers all of N except of some finite initial

segment and of the sets
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Fix M e N, e > 0, and choose K g X and S > 0 as in Lemma 5 If j € U n a , I'M ̂  ^M,
then dist {TTVX, KT)< yM As Pf is dissipative, there is lo= lo(x)eN such that
f'xeX\K for />Z0 If J"M^0 for some n so large that Tn+1>/0, then q =
•R<?(Pn+l) + 2<Mand j> = rT"+1+1x€ Vq, see Lemma3(c)(4) Now Lemma5(n) implies

dist (ny, endpoints of Vq) < S,

l e , in view of Lemma 3(a),

either (a) \iry-Tc\<8, or (b) \try- T"c\< S

Fix jsJ"M In both cases, Lemma 5(i) implies that there is ze l j r = i T~r{c} such
that \TJ(mc) — z\< e This is obvious in case (a), and it follows in case (b) upon
observing that Tn+l + l-q = Tn+l-l-RQ(Pn+l) = (rn+l by (4 5)

Putting everything together, we see that

(o(irx)cz{y dist(.y, X r )<y M }u U(e, M)

where U(s,M) denotes the e-neighbourhood of U^li T~r{c} In the limit e-»0
(for fixed M) this yields

M

a>(mc)<={y dist(y,KT)<yM}v\J T~r{c},

and in view of (4 13) and (4 12) we have in the limit M-»oo
OO

K7-cw(x)cA:ruU T~r{c} form-aex
r = l

But by Corollary 1 from § 1, <w(x)c KT or (o(x) is the closure of an open set for
m-ae x, whence w(x) = KT m-a e D
Proof of Theorem 4 If T has no absolutely continuous invariant measure of positive
entropy, then Pf has no invariant probability density by Lemma 2(c) Hence, if for
x&X and NeN we let n(N)efcl be such that o-n(N)< N<a-n(N)+l, then

«(A0 n(JV)
< ^0 as JV->oo m-ae

N O"n(N)
by Theorem 6 Denote fj.n = n' Y."Io f>rc If we set a0 = 0, then

as N-»oo for each i/>e C([0,1]) by (4 8), and some routine arguments involving the
weak compactness of o*(Sc) show that w*{Sx) c concl (w*(5c)) for w-a e x

As

- I m
r / i "-> \

T-= - I 6 ^ )

similar routine arguments show now that w*(m)^ concl (w*(5J)
Sketch of proof of (1 13) For a>0, e>0 and large «eN there are not more than
2"(a+F) (Afferent L, /?-strings of finite length with complexity <n(a + e) Hence the
total measure of the points x with \ogv(Zn(x))/log2>a+2e and
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k{\Vi(x), , wn(x))< n(a + e) is, for large n, bounded by 2~"e, and the Borel-
Cantelh lemma yields J,,(x)/log2< a + 2e for v-a. e x with K(x)<a Lete-»0and
observe that a > 0 was arbitrary •

Sketch of proof of (1 14) Let K(x) = hmJ^a0 n^kiw^x), , wn(x)), and assume
w 1 o g that n~x Y.",Lo &T'X -*

 v weakly as j -> °o The distribution of blocks of length
/ in w,(x), , wn (x) is, for large /, close to the distribution of these blocks under
v Fix a prefix-code from the blocks of length Z to {0,1}* with average length close
to / Ji,,(T)/log 2 Making / larger, the average length per block size / can be made
arbitrarily close to hv(T)/log 2 using some standard coding techniques This yields
a coding of w,(x), , wn(x), which leads to K(x)s/i r(T)/log2 •

Proof of Theorem 5
(1) If Ar>0, then T has the unique absolutely continuous invariant probability

measure ft, and K(x) = h^(T)/log2 for m-ae x follows from (1 13), (1 14) and
from Theorem 3

(2) If Ar s 0, then T has no absolutely continuous invariant probability measure
of positive entropy, whence Pf has no invariant probability density (see Lemma
2(c)), and n/<rn ->0 m-a e by Theorem 6 Let n(N) be as in the proof of Theorem
4, le o-n(N)< N <an(Nj+i In view of the shadowing property (4 8), the first N
digits H>I(X), , wN(x) of the itinerary of x can be recovered from the numbers
<x,, a2- tr,, , an(N)-crn(N)_, and N provided the itinerary of c is given as addi-
tional information There is a prefix-code over the alphabet {0,1} associating to
each positive integer n a codeword of length at most 2(1 +log2 n) (actually (1 + e) x
(l+log2 n) is possible) Hence, for fixed MeN and with cro = 0,

— fc(w,, , wN I itinerary of c)
N

2 /n<N> \

2 /n(N) I a -cr _,
£ ^ ( E (l+log2M+ ' M ' " '

-» — as N^>oo for m-ae x
M

As M € N was arbitrary, this proves the claim
(3) If T does not have sensitive dependence, we are in case I or II of the

Guckenheimer classification In case I, T"c tends to a stable periodic orbit, whence
the itinerary of c is eventually periodic, and in particular K(c) = 0 In case II,
K(c) = 0 can be deduced e g from the infinite *-product structure of the kneading
sequence (the itinerary of c) Another possibility is to apply (1 14), which says that
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744 G Keller

K(c)<hVT{T) = O, where {vT} = w*(Sc) is the unique invanant measure on the
attractor •
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