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Abstract Our main results, specialized to unimodal interval maps T with negative

Schwarzian derivative, are the following

(1) There 1s a set Cy such that the w-hmit of Lebesgue-a e point equals Cr Cr 18
a finite union of closed intervals or 1t coincides with the closure of the critical
orbit

(2) There s a constant Ay such that Ay =Tim,_. 1/n log [(T")'(x)| for Lebesgue-a e
x

(3) Ar>0 1f and only if T has an absolutely continuous invariant measure of
positive entropy

(4) Ar=inf{p " log|(T?)'(z)| TPz=z}, 1e umform hyperbolicity on periodic
points implies A >0, and A+ <0 implies the existence of a stable periodic orbit

1 Introduction and main results
In Keller (1987) we proved that the canonical Markov extensions of $-unimodal
maps (1 ¢ unimodal maps with negative Schwarzian derivative) are either dissipative
or (essentially) conservative and ergodic with respect to Lebesgue measure and that,
in the conservative case, they have a fimte or o-finite invanant density This
classification enabled us to show that an ¥-unimodal map has a finite ergodic
mmvanant density if and only if 1t has positive upper Lyapunov exponents on a set
of positive Lebesgue-measure

In this paper we attempt to extend this result 1n two directions on one side we
describe further consequences of the Hopf-decomposition We prove, for example,
that for each #-unimodal map there is a unique compact set C which 1s the w-limit
of Lebesgue-a e trajectory In the conservative case C 1s a finite union of intervals,
whereas 1t 1s the closure of the critical orbit 1n the dissipative case This answers a
question of Milnor (1985) Our second goal 1s to clanfy which properties of
&-unimodal maps are vital to the above results To this end we prove the existence
of a nice Hopf-decomposition for a more abstract class of dynamical systems that
we call regular Markov systems It includes in particular the canonical Markov
extensions of mulumodal maps with negative Schwarzian derivative (Blokh and
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Ljubich (1987) showed that these maps have no homtervals if they have no stable
periodic points ) In view of recent work of de Melo and van Strien (1986), van
Strien (1988), and Nowicki and van Strien (1988) there 1s some hope that also more
general smooth maps (not necessarily with negative Schwarzian derivative) give rise
to Markov extensions covered by this result In the following we give an outline of
this paper

In § 2 we investigate regular Markov systems let X be a metric space which
comes with a fimte or countable partition & We assume that each De % 1s o-
compact Fix a subset Y of X and a finite or countable partition ¥ of Y such that
for each Z € % there ts De & with Z< D and assume that T Y - X 1s such that
T(Z)eZX and T Z-» T(Z) 1s a homeomorphism for all Ze % Wnting Y, =Y,
Y,..=YNT'Y,and Y, =()._, Y,, one can consider T" Y, > X Let

n=1
Y, ={ZenT'Zin T VZ _, Zec¥YVi}
Then T"(Z)e X and T" Z-> T"(Z) 1s a homeomorphism for all Ze %, We call
such a system (X, T) a Markov system
Next we introduce a Borel-measure m on X In concrete examples this will usually
be Lebesgue measure or any other measure naturally associated with the metric
structure of X Hence we assume that m gives positive measure to each open set
Two minor additional assumptions are that m(Z) >0 for all Z € % and that there
1s k>0 such that cl(Z) 1s compact and m(Z)<o for all Ze %, The main
assumptions relating T and m are
(1) T 1s nonsingular with respect to m, 1e there 1s a positive linear contraction
P L)~ L} suchthat|, Pfdm={_, fdm for all Borel sets A< X In particular
there 1s a measurable function g X - R, such that

Pf=3 (f g)eT7, T, =T, (11)
AL

1/ g 1s the ‘derivative’ of T with respect to m
(2) There 1s a positive cone # < €(X ) containing the functions y,, D € Z, such that

fe¥H, Zce Y= P(fxz)c ¥ (12)
J 15 closed 1n the topology of uniform convergence on compact subsets (1 3)
% — % 1s dense 1n L, (14)

For all De & and for all compact K < D the set
{log fix fe ¥, f= 0} 1s equicontinuous (15)

As P'f=Y .., P(P""'f xz), 1t follows inductively from (12), (13) and (15)
that

Pfe ¥ or P'f=00 forall n=0and fe ¥ (16)

Observe also that (1 5) implies fj, =0 or f5,>0 for f€ ¥ and De ¥ A quadruple
(X, T, m, ) as above 1s called a regular Markov system
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The transformation T induces a combinatorial Markov structure on ¥ For
U, Ve ¥ write

U->V (f Ve TU,
U=V if there are U= Uy~> U,~» > U, =Y,
U=V fUxVand VxUorf U=V

This yields equivalence classes [U], [ V], etc, ordered by [U]=<[V]if UV
We call [U] maximal, if [U]=<[V] imphlies [U]=[V]

Let supp[U]l={xe X xe V forsome V= U} The sets supp [ U] provide a fimte
or countable partition of X into irreducible subsets X,, 1€ I As TUe & for Ue %,
each X, 1s a union of elements from & except when X, = U for some U e ¥ with
U# U We call X, maximal 1f 1t 1s the support of a maximal equivalence class As
n the theory of countable state Markov chains (e g Ch 7 of Breiman, 1968), each
X, has a mimmmal period p,, and each maximal X, 1s a disjoint union of sets

X.1, X, which are cyclically permuted by T The X, are unions of elements
from & For later use we remark that for each X, holds

Finally let B,={J,., T "X,
In this situation we have

THEOREM 1 Let fe # L., and S,f=Y"_y P*f Fix some 11 and x,c X, Let
s, = S,f(x,) and suppose that s,>0 for some n Then s,=0(n), f(y)=
Im, . s.'S.f(y) exists forall ye B,, 0< f <0 on X,, and f xx € ¥ Furthermore
(1) If (s,) 1s bounded, then P 1s dissipative on X,
(2) If (s,) 1s unbounded, then P 1s conservative on X,, m(X\Y.)=0, and X, is
maximal
(3) If U, .o T "xo 1s dense in X, and 1f (s,) 1s unbounded, then there 1s a unique
h, € %, such that Ph,= h,, h,(x,)=1, h,>0 on X,, and h,=0 on X\ X, h, has the
following properties
(a) f Xx, 1s a constant multiple of h, and f=0 on all nonmaximal X, for each
fe¥nlL, If¢el,, then im,.cs,'S,p=h, |, pdm/f, fdmm-ae on
X, As a consequence, the system (T, h,dm) 1s pointwise dual ergodic
(b) fh,dm<oo ifandonly ifn 'S,f>y fasn->oo m-ae on B, for some y>0
In particular the system (T, h, dm) 1s ergodic If, even more, for each compact
K < X and each 8> 0 there 1s k>0 such that K n X, | 1s contained in the
8-neighbourhood of T™*":x, (for that X, , which contans x,), then we have also
(¢) If | h,dm <o then the measure-preserving system (T, h,dm) is the product
of an exact system with a finite rotation
(d) If [ h,dm =00, then P"y >0 as n > uniformly on compact subsets for all
YeHAL, with 0=y =<h,

Recall that P 1s dissipative on X, 1if Y, _ P"f<oco m-ae foreach f=01n L), and
that P 1s conservative on X, if there 1s some fe L}, positive on X,, such that
Yuso Pf= m-ae on X, (cf §31 in Krengel, 1985) The measure-preserving
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system (T, i) 1s exact, if 1t has a trivial tail-field, and 1t follows from Lin (1971)
that this 1s equivalent to lim,, | P"f—J fdu| =0 for all fe L), The conservative,
ergodic measure-preserving system (7T, u) 1s pointwise dual ergodic, 1if for the dual
operator T* L), > L) definedby [¢ T*¢pdu=fy°T ¢pdu(yelL, L) there
1s a sequence (a,) of positive reals such that im,_ a,'Yi_\ T**¢ =[ p du p-ae
for all ¢ € L, (see Aaronson, 1981)

We pause here for a moment to see how maps with nonpositive Schwarzian
derivative fit into the framework of regular Markov systems and to discuss a first
application of Theorem 1

Let U and V be two fimite open intervals and suppose that F U->V 1s a
€>*-diffeomorphism with nonpositive Schwarzian derivative, 1 e

F" 3(F"\’
FF = F 2(F’) =0
We denote by @"(U) the set of all positive functions f 1n €"(U) for which 1/Vf
1s concave Misturewicz (1980) noticed thatif f€ @*(U), then (f/|F'|) o F'e 2*(V),
and an approximation argument shows that the same 1s true with 2°(U) and 2°(V)
instead of @*(U) and @*(V) Using another observation of Misiurewicz’s, namely
that F =0 if and only iIf l/m 1s convex, one can actually prove the same
statement assuming only that F 1s €' and 1 /\/ﬁ 1S convex

Misiurewicz also proved that @°(U) 1s closed 1n the ucs topology and that
DU(U)—D°(U) 1s dense 1n L., Finally observe that the concavity of 1/vf imphes

(b—y) _flx)_(y—a)’
(b-x)*" f(y) (x—a)
if U has endpoints @ and b and if a<x=y<b

Suppose now we are dealing with a Markov system where X 1s a finite or countable
disjoint unmion of fimte open intervals and where T Z - T(Z) has nonpositive
Schwarzian denvative for all Ze & Let

H={feb(X) fipe 2%(D) forall DeZ} (18)
In view of the above discussion (X, T, m, ) satisfies (1 1)-(15), 1e 1t 1s a regular

Markov system Since it 1s one-dimensional, we can prove the following remark,
which facilitates the application of Theorem 1

Remark 1 Let (X, T, m, %) be a regular Markov system with nonpositive Schwarzian
denvative as described above If X, 1s an irreducible subset on which P 1s conservative
and 1If x,€ X, ,, then for all compact K < X and all 6> 0 there 1s a k> 0 such that
K n X, , 15 contained 1n the 8-neighbourhood of T *{x,} In particular T has no
homtervals (Recall that J 1s a homterval, 1f 1t 1s a nontrivial interval and 1f T"; 1s
monotone for all n)

Proof Suppose the assertion 1s wrong Since P 1s conservative on X,, m(X\Y,)=0
by Theorem 1 Hence there 1s a point x€ K n X, , " Y, which has an open interval-
neighbourhood I such that x,¢ T**(I) for infinitely many k>0 Let U,(x) be that
element of %, which contans x, J =), _, U,(x) Since X, 1s irreducible, I nJ 1s
a nontrivial interval, whence J 1s a homterval Since 1t cannot be wandering - this
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would contradict the conservativity of P on X, —1t must be cyclic,1e T"JcJ for
some n>0 (n minimal with this property) But then J contains a stable (possibly
one-sided stable) periodic point of T with period n, which again contradicts the
conservativity of P on X, (I want to mention here that Blokh and Ljubich (1987)
actually proved the non-existence of wandering homtervals for maps with negative
Schwarzian denvative )

Now general interval maps with negative Schwarzian denvative do not come as
Markov maps However, there are several useful ways to derive Markov systems
from a given interval map and to study the map using the derived systems

A rather naive, but yet fruitful approach s the following Consider T [0,1]->{0, 1]
with

T=0and Ar ={0,1}u{x T'(x)=0} finite (19)
Let
K= U cl{T"a n=0}

acAr

and X =[0,1\K+, Y =XNnT'X For & (resp %) we take the partition of X
(resp %) into maximal open intervals Obviously T(Z)e X and T Z->T(Z) 1s a
homeomorphism for all Ze %, 1e (X, T)1s a Markov system The above discussion
shows that Theorem 1 applies

Let X, be the union of all those X, on which P 1s dissipative, X, the union of
those X, on which P 1s conservative Observe that X, and X, are open sets and
that [0, 1] 1s the disjoint union of X,, X, and K,

If Tix, 1s dissipative, then for each compact L< X,

Y m{x T"'xelL}=Y J' P"ldm=J hm S, fdm < oo,
n=0 n=0JL p no>®

the finiteness of the integral being a consequence of (1 5) Hence w(x)nint (L) =&
form-ae xe X,1e w(x)n X, = for m-ae xe X On the other hand, if T"xe X,
for large n=0, then w(x)ccl(X,;)c X, uK;+ Hence w(x)c Ky for m-ae
x€( N0 T7" Xy

If xelU,., T "Kr, then w(x)< Ky, as TKy < Ky and K 1s closed

Finally we must consider those x, for which T"xe€ X, for some n=0 As X, 1s a
union of maximal irreducible subsets, for each such x there 1s a maximal X, such
that w(x) < cl(X,) We claim that there 1s even equality for m-a e such x Since T
1s nonsingular, we may assume x € X,, and by Remark 1, T|x, 1s Lebesgue-ergodic
Hence there 1s equality, and we have deduced from Theorem 1 the following

CoROLLARY 1 In the situation just described, for m-ae xe X holds w(x)< Ky or
w(x)=cl(X,) for some X, on which P 1s conservative

More information about the sets w(x) can be obtained from another regular
Markov system associated with a map T [0, 1]~ [0, 1] which satisfies (1 9), namely
from 1ts canonical Markov extension that we introduce in § 3 The dynamics of this
extension are so closely related to those of T that Theorem 1, apphed to the extension,
1s the key to the following refinement of Corollary 1 for ¥-umimodal maps (These
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are maps T of [0,1] with ¥T=0, T(0)=T(1)=0, T'(0)>1, and just one point
c€[0,1] where T'(c)=0)

THEOREM 2 Suppose T 1s F-umimodal Then one of the following 1s true w(x)=C =
(a fimte union of compact intervals) for m-ae xe[0,1] or w(x)=w(c) for m-ae
xe[0,1]

This theorem, whose final proof i1s given in § 4, answers a question of Milnor
(1985) A similar result was obtained by Guckenheimer and Johnson (1990) and,
as I was told, also by Blokh and/or Lyubich
Note added in proof Blokh and Lyubich published this result in [ Ergodic properties
of transformations of an interval, Funct Anal Appl 23 (1989), 48-49] Full proofs
are supplied 1n preprint 1990/2 of the Institute for Mathematical Sciences at the
SUNY Stony Brook Another proof of Theorem 2 1s contained 1n the PhD thesis of
M Martens on Interval Dynamics, TU Delft (1990) Both papers contain further
interesting results about Cantor attractors

In § 3 we also investigate various growth numbers associated with a map T of
[0, 1] which satisfies (19) Let

X(x) =T+ Tog [ 7Y (0l (110)

1(x) = Tim —~log m(Z,(x)), (1)

H,(§&)=- L m(Z)log m(Z), (112)
Ze,

where Z,(x) 1s the maximal monotonicity interval of T" containing x, £, 1s the
collection of all Z,(x) for a given n, and m, 1s normalized Lebesgue measure on
B, By A(x) and I(x) we denote the corresponding limits of the expressions in (1 10)
and (1 11) 1f they exist

From the classification of the canonical Markov extension given by Theorem 1
we derive

THEOREM 3
(a) Suppose T satisfies (19) Then there are a measurable partition (B,, , B,) of
[0,1] and constants A% ,=0 such that max{A(x),0}=A%, and I(x)=
Iim,_..n'H,(£&)=AY, form-ae xe B, For every B, holds
AT .>0 if and only if Tjs, has an absolutely continuous mvanant probability
measure ., of positive entropy In this case u, 1s unique and A(x)=I(x)=
h, (T)={log|T|du, =A%, for m-ae xe B,, and there 1s X, < B, such that y,
and m restricted to X, are equivalent measures and B,= ., T "X,
(b) If T s umimodal as in Theorem 2, thenp=1, B, =[0, 1], and 1f T"(c) # 0 we can
say a bit more There i1s a constant Ay such that A(x)= Ay for m-ae x and
(1) Ay>0 1f and only if T has an absolutely continuous invanant probability measure
p of positive entropy u has all the properties of the measures p, in (a)
(2) Ar <0 if and only if there 1s a stnictly stable periodic orbit {z, Tz, , T 'z} In
this case A(x)=A(z)=Arform-ae x
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This theorem has the following

COROLLARY 2 Each of the following conditions imples the existence of a umque

absolutely continuous T-invariant measure of positive entropy on B,

(1) A(x)>0 on a subset of B, of positive Lebesgue measure

(2) I(x)>0 on a subset of B, of positive Lebesgue measure

(3) There are C>0 and a <1 such that m(Z)<Ca" f Z € &,

(4) TisP-umimodal with T"(c) # 0 and there are C >0 and B > 1 such that |(T")'(z)| =
CB"f T'z=z

For conditions (1)-(3) this 1s an immediate consequence of Theorem 3 The fact
that condition (4) also tmplies Ay >0 was observed by Tomasz Nowick: (personal
communication) We give its proof in § 3

The reader will have observed that Theorem 3 does not provide any information
in the case A, =0 It turns out that a great variety of different asymptotic behaviours
can occur 1n this case, and the full range of these possibilities 1s already displayed
by ummodal maps, e g by the quadratic family T,(x)=ax(1—x) Therefore we
restrict our further discussion to ¥-unimodal maps T of [0, 1], and we write Ay
mnstead of A,

Guckenheimer (1979) classified these maps into three types according to their
asymptotic topological behaviour An ¥-umimodal map T has either

(I) a unique stable periodic orbit z=T"z, or

(II) an invanant zero-dimensional attractor restricted to which T acts like an
wrreducible rotation on a compact group (generalized adding machine, also
called register shift), or

(IIT) T 1s sensitive to 1mit1al conditions, 1 e there 1s £ > 0 such that for every interval
I<[0, 1] there 1s some n>0 with m(T"I)> ¢

In case I, A+ <0, and A+ =0 1f and only 1f [(T?)(z)|=1 In case II, A =0 by
Theorem 3, since T has neither a stable periodic orbit nor an absolutely continuous
mvarnant measure of positive entropy The unique invariant probability measure on
the attractor (the Haar-measure of the group rotation) has entropy zero In case II1
there 1s no stable periodic orbat, whence A =0 by Theorem 3 On the other hand
this case comprises all maps T with A->0 Any hope that all case III maps have
Ar>0 was destroyed by a counterexample of Johnson (1986) who constructs a
transformation with sensitive dependence to imtial conditions but without any
absolutely continuous invarnant measure and hence with A, =0

Still one might hope that the following conjecture 1s true for each ¥-unimodal
T there 1s a probabihity measure », on [0,1] such that »r=
weak-lim, ., n~'¥;_ mo T™% This conjecture 1s true in the following situations
In case I, vy 1s the umiform distribution on the unique stable periodic orbat, 1n case
I1, 1t 1s the umque invanant probability measure on the attractor, and if A;+>0 1n
case 111, vy 1s the unique absolutely continuous invariant probability measure of
positive entropy In all these cases | log |T’| dvr = A+ For case I this 1s nearly trivial,
for case II this was proved in Keller (1989b), and if A+ >0, this 1s just the Ergodic
Theorem applied to the function log |T’| In general, however, the above conjecture
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turns out to be hopelessly wrong if A =0 Reinterpreting Johnson’s construction
for our canonical Markov extensions the following 1s proved in Hofbauer and Keller
(1990)

Remark 2 The family of quadratic maps contains infinitely many examples of maps
with sensitive dependence to imitial conditions, A = 0, but without a natural measure

There are also examples where A =0, a natural measure vy exists, but where v,
has positive entropy

There 15 also a positive result in this direction intimately related to Theorem 2
For a probability measure » on [0, 1] let

1 n—1
w*(v)= {weak accumulation points of (— Y we T"‘) },
N k=0 n>0

and for a set M of probability measures on [0, 1] denote by concl (M) the convex
closure of M in the weak topology In § 4 we prove

THEOREM 4 w*(m) < concl (w*(8.)) and w*(8,) < concl (w*(8,)) for Lebesgue-a ¢
x €[0, 1], 1f T has no finite absolutely continuous invariant measure of positive entropy

The quantities A(x) and T(x) measure to some extent the degree of unpredictability
of the orbit of x, see Shaw (1981) for a discussion However, A(x)=I(x)=0 for
m-a e x does not exclude the possibility that each singie trajectory 1s very compli-
cated Itonly means that there are so few essentially different trajectories oritineraries
that the amount of information (in the sense of Shannon) gained by realizing the
first n symbols of a particular itinerary 1s of the order o(n) Indeed, Remark 2 shows
that there are situations where m-ae orbit 1s generic for the same asymptotic
distribution v+ of positive entropy, and 1t will turn out in Theorem 5 that at the
same time m-a e 1tinerary 1s very similar to the itinerary of ¢

Another measure of the unpredictability of a trajectory — 1ts algorithmic complexity
K (x) (with respect to a finite partition of the phase space) — was introduced by
Brudno (1982, 1983) It 1s not based on Shannon’s statistical concept of information
but on the amount of information needed 1n order to construct an individual itinerary
Roughly speaking, for umimodal maps complexity 1s defined as follows we fix a
universal Turing machine whose alphabet contains the symbols L, R, 0,1 Following
Kolmogorov, the complexity k(w) of a finite word w over the alphabet {L, R} 1s
defined to be the length of the shortest word over {0, 1} which, given as an input,
causes the Turing machine to produce w and nothing else as output For an infinite
L, R-sequence w=w,w,w; we then define the complexity K(w)=
Iim, .o n 'k(w, w,) The value of K(w) 1s actually independent of the particular
umversal Turing machine chosen for reference, see Brudno (1983) Next, given a
ummodal map T on [0, 1] with crnitical point ¢, we define the itinerary w(x) =
w(x)ws(x)ws(x) of a point xe[0,1] by w(x)=L if T'x=c¢ and w,{x)=R If
T'x> ¢ Finally let K(x) = K(w(x)) It 1s not hard to see that K(Tx)= K(x) For
a probability measure » on [0, 1] define I,(x) as in (1 11) but with respect to the
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measure v instead of m The two basic relations between K(x) and I,(x) are (cf
Brudno, 1983)

I(x)/log2=K(x) for v-ae x, if » 1s a probability measure on [0, 1], (113)
K(x)=sup{h,(T)/log2 vew*(5,)} (114)
We sketch the proofs of these inequalities 1in § 4, where we also prove

THEOREM 5 Let T be $-umimodal

(1) If Ar>0, then K(x)=Ar/log2 m-ae

(2) IfAr=0, then K(x)=< K(c) m-ae More preasely, K(x|w(c))=0 m-ae,1e if
the Turing machine has a second (read only) tape on which w(c) is stored and 1f
it can use this information freely, then the length of the shortest 0, 1-input which
causes the output w\(x)  w,(x) 1s of the order o(n)

(3) If K(¢)>0, then T has sensttive dependence to imitial conditions

As a matter of fact, the construction of Hofbauer and Keller (1990) shows that
there are examples of maps 1n the quadratic family for which Ay =0 but K(c)>0
I have no 1dea, however, whether A =0 implies K(x) =0 for m-ae x

2 Hopf decomposition and ergodic properties of regular Markov systems

Let (X, T) be a regular Markov system as described in §1 with g X >R, as in
(11) For n>0 set g,(x)=g(x)g(Tx) g(T" 'x)

Proof of Theorem 1 We start by observing the following consequence of (15) for
each ze X and each compact neighbourhood N of z there 1s a constant ¢ = ¢(z, N)
such that

¢ '=f(y)/f(z)<c forallye N and 0% fe

Let fe ¥ L., Then [ P*fdm=[fdm<o and 0= P*fe %~ L}, by (16) for all
k=0 Hence,

P*f(z)=¢(z, N) m(N)™' dem<00 uniformly n k @2mn

Observe that 0 < S,,f=Z:;:) Pfe ¥ L} forall n>0 Fix 1€ I and xo€ Z€ ¥ for
some Z < X,, and consider any ye Z In view of (15), S,.f(y)=0 1f and only 1f
S.f(xo) =s,=0 Hence, 1f s,>0 for at least one n, then 0<him, . 5, S.f(y) <
Next consider z€ T’y for some j>0 and fix a compact neighbourhood N of z
By (21)

n—j—1

A= T ¢ e+ T P

k=0 ueT” =n-j

n—jy—1

N D T, gk+,)(u)/g,(z)+k"i' PA(2)

k=0 e th+n, =n—y

=S.f(»)/g(z)+) ¢(z, N) m(N)™' dem
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Since z can be any point in B, and since s, >0 for some n,

J()=Tim 5,"S.f(z) <o

for all ze B, f>0 on X, follows by interchanging the roles of y and z

As 5.'S.f(x)=1 for all n, (15) implies that the sequence (s,'S.f) xx has
nontrivial u ¢s accumulation points, and in view of (1 3) all these accumulation
points belong to #

If (s,) 1s bounded, then f=lim,_ s,'S,f pointwise and hence also ucs on X,,
te f xx €% Assup,S.f<sup,s, f<oo, Pis dissipative on X, 1n this case

So assume from now on that (s,) 1s unbounded, 1 ¢ P 1s conservative on X, By
(21), s, =0(n) Our first remark 1s that m(X,\Y)=m(X\T 'X)=0, whence X,
1s maximal Let U=X\T 'X As T 1s not defined on U, all sets T"*U (k=0) are
pairwise disjoint Hence IU S,.fdm =Z:;:)_[T4dem =[fdm<oo for all n, 1
IU sup, S, dm <00, and since P 1s conservative on X,, it follows that m(U) =0 Now
m(X,\'Y,) =0, because X, 1s maximal and T is nonsingular with respect to m

Let ¢ be any ucs accumulation point of (s,'S,f) xx We saw already that
¢ € H Now we prove

Pb=¢ on X, if 6=lm(s;'S, /) xx. (22)
]

(Observe that if xe B\X,, then x belongs to a nonmaximal X, whence
hm, o s;}’S,,]f(x)=0.) We interpret p, =(g(y) ye T 'x) for each x as a o-fimte
discrete measure on T~ 'x By Fatou’s Lemma and (2 1) we have for x € X,

Pp(x)= Y (}Lrglos;,‘sn,f(y))g(y)

veT 'x

<lm s, ; S, f(y) g(y)

ad

=hm s,'PS, f(x)

J=>©

=hm s5,'(S, f(x) = f(x)+ P"f(x))

Jj—=>©

=¢(x)

Hence P¢ = ¢ on X, since P 1s conservative on X,
Let #={he¥nL., Ph=h [hdm=1, and h,=0 outside X,} We claim

card (%) =1 (23)

In order to prove this, let ¢ € L), be continuous, = 0 outside X,, and suppose that
Py=¢ and [¢ydm=0 By positivity of P we have Py*=y*=0, and since
[ Py* dm=|[y* dm, 1t follows that Py* =y¢* and Py =y, where ¢, ¢ are
continuous As J,., T "x, 1s dense 1n X,, this implies ¢ =0 on X, or ¢ >0 on

https://doi.org/10.1017/50143385700005861 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700005861

Exponents, attractors and Hopf decompositions 727

X, and the same for ¢~ Hence ¢ =0, because | ¢y dm =0 and supp (m) =X Now
(2 3) follows immediately

We consider the case card (%,) =1 first Let h, be the unique element in %, h,>0
on X, by (1 7), and a varniant of Hopf’s ergodic theorem (Theorem 3 3 12 1n Krengel,
1985) imphies

1
llm—Snf=dem h, m-ae on B,
n->oc n

Since the sequence (n™'S,f) xx 1s ucs relatively compact, the convergence 1s
also 1n the ucs sense on X, In particular, s,/n —>Ifdm h,(x,) and hence

L Sl h,
1
s, h(x)

——=f m-ae on B,

Now the ‘only 1f” part of assertion (b) and the ergodicity of the system (T, h, dm)
follow from (1 4)

Suppose next that ¥, = Because of (15) and (2 2) we still have at least one
P-invaniant ucs accumulatlon point ¢ of s,,'S,,ﬁxX, (which 1s not integrable in
this case) In view of our assumptions 1n § 1 we can find Z< X,, Ze %, for some
n>0 such that cl (Z) 1s compact and m(Z)<oo Consider the first return map
T, Z-Z, T,(x)=T""x, where n(x)=min{n>0 T"xe Z} As P 1s conservative
on X,, n(x)<oo for m-ae xe€Z and T, 1s m-ae defined It 1s routine to check
that (Z, T;) 1s a Markov system Restricting also m and & to Z it 1s not hard to
see that one obtains a regular Markov system with associated transfer operator P,
It 1s well known that P = ¢ imphes Pz{(¢;z) = ¢z, and since cl (Z) 1s compact
and m(Z) <, ¢z 1s m-1ntegrable Hence the above considerations apply to the
system (Tz, ¢zdm), and the ergodicity of this system follows Now the system
(T, ¢ xx, dm) must also be ergodic, since |, ., T*Z =X, mod m In particular,
h, = ¢ 1s the unmique (up to constant multiples) P-invariant density which does not
vanmish on X, It satisfies Ph,=h,, h,>0 on X, and h,=0 on X\X, We fix the
arbitrary constant factor by requiring h,(x,) =1 Then h, 1s the only u ¢ s accumula-
tion point of (s,'S,f)xx,, 1€ this sequence converges ucs to h, =f Xx, Now the
“1f” part of (b) follows from Birkhoff’s ergodic theorem, which asserts that n='S,.f - 0
h,dm-ae

For the following considerations let h, = Ph,, where h, can be integrable or not
If e L., then

528,00 =5,'S.f (S.¢/S.f)~>h, J ¢dm/j fdm m-ae on X,
B, B,

by the Chacon-Ornstein Theorem (see Theorems 3 2 7 and 3 3 4 in Krengel, 1985)
Let du,=h,dm and denote by T the dual operator of T L} - L, Then the
pointwise dual ergodicity of (T, u,) follows, because TF¥¢p = P(ph,)/h,, as 1s easily
checked This fimishes the proof of (a)

We are left with the proofs of (¢) and (d) For $elL),, 0<¢<h,, let 47—
Iim,.. P"¢ As P"y< P"h,<h, for all n, we have ://<h,, whence P*j < h, for all
k Let pou=(8(y) yeT™"x) AsY .+, h(¥)g(y) = P*h(x) = h(x) <o, we have
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0=P"y=<h,e L) forall n and x Hence, by Fatou’s Lemma,

PYi(x)= % (gk gg_rgom)(y)

veT “x

=Tm 3 (g PW)(»)

N> e T x
_ (24)
=Tim P" " y(x)

=i (x)

Letf=Pjy—¢ Thenf=0andY;_, P*f=lm,_. P"y— ¢ =h, <o As P1sconserva-
tive on X,, this implies f=0 m-ae on X,, 1¢e P!/;= a/; m-ae on X, In particular,
([7=c h, for some ¢=0

Now suppose additionally that ¢ € # Fix € >0 and K < X, compact with m(K) <
oo Because of (1 5) there 1s 8 > 0 such that |log f(x) —log f(y)| < & whenever x, y € K
with d(x,y)<é and fe ¥, f>0 Let X,,, ,X,, be the cyclic decomposition of
X, There s je{0, ,p,—1} such that xo€ X,, By assumption, there 1s some
N = kp, > 0 such that K n X, ; 1s contained 1n the 8-neighbourhood of T~ Mx, Hence
there 1s some finite subset of T~ "x, the 8-neighbourhood of which contains K n X, ,
Choose positive integers r, such that 1/7(x0) =1im, e P""Ny(x,) and such that
lim,, P (y) exists for all ye T Vx, Let ¢* =lim,.o Py Then ¢*=< 4, and, as
mn (2 4),

P™i(x0) = d(x0) = Ttm P (P™)(x0) = PMg*(x0) = PM(xo),

1e PN(J—y*)(x,)=0, and as ¢ —y*=0, this implies ¢ = ¢*=hm, .. P™¢ on
T ™x, Hence, for large n,

J. lljdmse:’ej P'"(//dmsekJ.d/dm
KnX, KnX,

ty vy

In the limit € >0 and K 7 X this yields

j (ﬁdmsJ'(//dm (25)
X

L)

In particular

ﬁJh,dm=cJ' h,dm=j Jdmsjwdm
P X, X

If _[h, dm =00, this implies ¢=0, 1¢ hm,.. P"¢y =0 pointwise and hence also
ucs This proves (d)

If { h, dm <o, choose  such that ¢ =0 outside X,, By dominated convergence
f(P"y—~y)* dm—>0as n->c Hence

o=[ 1Py~ lam
X‘,

=2J (P"”'t/f—«ﬂ)*dm—J (P — ) dm
X,

X

iy i)
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szj(me—erm+J Jmn—dem
X' !

gZJ(Pm¢—$fdm by (25)

-0 as n->oo,

which proves in view of (14) that (T", h, xx, ,dm) 1s exact In order to finish the
proof of (c) observe that for each k=1, , p, the system (T, h, Xx,, .\, mea . dm)
1s a factor of (T”, h, xx, dm) via the factor map T X, > X.(,+kymod p, » Whence 1t
1s also exact O

In the remainder of this section we prove some general results relating the existence
of an integrable 1nvarnant density to certain growth-numbers and an entropy-like
quantity of the underlying system These results are basic for the proof of the more
specialized Theorem 3

For We X and Ue ¥ let

Y, [W,U]={Ze®¥, Z<U and IxeZ with P’xe W (=1, ,n—-1)},

N,[W]=sup card %,[W, U], and
[W)=sup [W. U] 26)

—1
h*[T, W]=hm ;log N, [W]

Finally, for a T '-invariant subset Q of X, let
ho(Tig) = nf {K*[ T, Q\K] K < X compact}
h«(Tin) might be called the topological entropy at infinity of the system (£, Tjq)

ProposiTiION 1  Suppose (X, T,m, ) 1s a regular Markov system with

supceam(C)<oo Let F, X - (0,00) be a sequence of measurable functions such

that T =sup{f, F,dm n>0, Ze ¥,} < If Q= T'Q is such that

(1) P s dissipative on (), or

(1) There 1s no m-integrable P-invariant density on Q) and there i1s x,< €} such that
Qcc(U,.o T %),

then

—1
lim —log F,(x) < h.(Tjq) for m-ae xe)

n-oc
We note the following corollary

CoROLLARY 3 Suppose (X, T, M, ) 1s a regular Markov system with supc. s m(C) <
o and Q= T7'Q 1s a measurable subset of X If lim sup,..—n""log m(Z,(x))>
ho(Tia) or hmsup,.. n~'log g,'(x)> h( Tiq) on a subset ¢f Q of positive m-
measure, then T is conservatwe, and if Q< cl(lJ,., T "x,) for some x,€(Q, then
there exists a T-invanant probability measure < m with du/dm e %, supp (1) < (2,
and h,(T)>0

https://doi.org/10.1017/50143385700005861 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700005861

730 G Keller

Proof Let F,(x)=1/m(Z,(x)) or F,(x)=1/g,(x), and observe that ]z g, dm=
[ P"(x2g,") dm = xrnzdm <supc.x m(C) <o Now, in view of Proposition 1 and
Theorem 1, each of the two conditions implies the assertion of the corollary O

Proof of Proposition 1 We use the notation of Theorem 1 Let £¢>0, §>0 and fix
K < X compact such that h*[ T, Q\K]< h.(Tjq) + 8 Remember that each fe ¥ 1s
bounded on K in view of (1 5) Hence, if P 1s dissipative on X,, and if Z € ¥, has
finite m-measure, then (3., P'xz) xx € and ) . m(ZnT "(KnX,))=
Skox, Znmi P'xzdm <oo,suchthaty,_, xx~x,(T"X) < for m-ae xe Z Since we
assumed that there 1s some k with m(Z) <o for all Z € %, 1t follows a fortion:
n—1
llml Y xk~x(T’x)=0 for m-ae xeX, 27

n—>oo N l=0
On the other hand, if P 1s conservative on X,, then assumption (11) of the proposition
together with Theorem 1 guarantees the existence of an infinite ergodic absolutely
continuous invariant measure u, on X,, and (2 7) follows from Birkhoff’'s Ergodic
Theorem In any case, (27) holds forae xeQ As K 1s compact, there are only
finitely many X, with K n X, # (J Therefore there 1s N = N(¢, §) such that

n—1

m(Q\Ap ;) < e, where AN5={er Z_‘, xk (T’x) < én for all nzN} (28)

7=0
Let hs = h*[ T, Q\K]+ 8 Then
N,[Q\K]=e"" for large n 29)
Denote by S(38, n) the family of all sets M = {0, , n—1} with card (M) =< &n Given
U and n= N we have
{Ze®, Zc U, ZnAn;#D}s U B(M,n, U), (210)

MeS(&n)
where B(M,n,U)={Ze%, Z< U and 3xeZ sth jeM& Txe K} Fix Me
S(8, n) and denote the elements of MU {0, n} by 0=k,<k;< <k,=n Then
r<card (M)+2=<6n+2 and

card (B(M, n, UY) = I] Ni_s [O\K]

=

r
§=

els k) by (29)

1
=eh8”
Hence, by (2 10),
card {ZeW, Zc U, ZNnAns# Dt=card (S(8, n)) e""
n(H(8)+8) (2 hyn

=e

for large n, where H(8)=—-581log 6 —(1—68)log (1—8), and we used Stirling’s for-
mula to estimate card (S(8, n)) Now

j F,dm=card{Zec¥, Zc U ZnAN;#2} T
UnANs

< F(CH(5)+5+h5)",
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which allows the estimate
m( U A ANE A {Fn = (eH(8)+28+h5)n})S F e—&n

Now the Borel-Cantelli Lemma yields

—1
Iim ;log F,(x)<H(8)+26+h;

n-»oo

=H(8)+45+ ho(Tn)
form-ae xe Un Ay, and since U € ¥ was arbitrary, this holds for m-ae xe€ An s

As m(QQ\ Ay 5) < € (see (2 8)), we obtain the assertion of the proposition in the limit
£, 6-0 O

3 Canonical Markov extensions for interval maps

Throughout this section let T [0, 1]~ [0, 1] be a precewise monotone C'-map with
a finite number of critical points, 1 e there are 0<a, <a,< < ayn_; <1 such that
T'(a)=0fori=1, ,N-—1and T'(x)#0 otherwise Let a,=0 and ay =1 Then
Tia,_,.a) 15 @ homeomorphism from [a,_,, a] to [Ta,_,, Ta,} 1=1, ,N)

In a series of papers, Hofbauer (1979, 1980, 1981a, b, 1986) constructed certain
countable state topological Markov chains for such maps (called Markov diagrams),
which admit the given system as a topological factor He showed how knowledge
about the chains can be turned into knowledge about the asymptotic topological
properties of the transformations T Inspired by Hofbauer’s construction, we used
a vanant of the Markov diagrams (called canonical Markov extensions) to study
Ruelle-zeta-functions of piecewise analytic interval maps (Keller, 1989a) The main
advantage of the extensions over the diagrams 1s that they are locally smooth with
the same degree of smoothness as the underlying transformation T We shall use
these canonical Markov extensions (more exactly, a technical vanant of them) to
construct a regular Markov system very closely related to the given map T

Let £ be the partition of [0, 1]\{a,, a;, , an}1nto maximal open 1ntervals, and
define Z recursively by

0,1)e ¥ and 31
f DeXand Ieé with DnI#J, then T(DneX 32)
Let X be the disjoint umon of intervals from %, formally
X={f=(x,D) DeZ and xe D}
Define = )?—»(0, 1) and 7y Xe%by
w(x,D)=x, w3 (x,D)=D
With the discrete metric on & and the usual distance on (0, 1), X becomes 1n a
natural way a metric space, whose subsets 7' D can be 1dentified with the subsets
D of (0,1) Zr;'D must not be confused with 7~ 'D, however Denote by 2 the
partition of X nto the sets 7;'D
Slnce the Lebesgue measure m 1s defined on each D € &, 1t carnies over immediately
to X, where we denote 1t by it (#1(M)= m(wM) for measurable M < 7' D) The

corresponding or-algebras of Lebesgue measurable sets are denoted by @ (for m)
and % (for )
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Let V=X \7 Y{a,, ,an}, and denote by @ the partition of Y into maximal
open mtervals Obviously ¥ =% v 7 '¢ Indeed, ¥ =J,_, ¥'*, where &=
{770, )71 Tegand G4 =GO G HAD with

G AT Uy A7 TP Ue GNG ) [eg)
Observe that usually 9%~ @&™ % ¥ In fact, 1t may happen that $**Vc F*),
in which case @ 1s finite

The map T lifts to the following transformation T Y->X

f"(x, D)= (Tx, C) where C=T(DnI) for that I € ¢ which contains x

The basic relation between T and T 1s

oT=Torx (33)
Let Z=n;'Dnn'Ic¥, DeZ, Ic—:.f Then T(#Z)=T(DnDeZ,1e (X, T)
1s a Markov system for the partitions £ and &
Suppose (x, D)€ Y,(=M;_) T7*Y) Then T*(x, D)e ¥ for k=0, ,n-1,1¢
T*x¢{a,, ,an}for k=0, ,n—1,and it s easily checked that
T"(x, D)=(T"x, T"(D n Z,(x)), (34)
where Z,(x) 1s the maximal interval m [0, 1]\U:;:) T *{a,, ,axn} that
contains x
In particular, 1fxEUk>o T *{a,, aN} and 1fﬂn,OZ (x) = {x}, then for each
parr X, X,€ 7 'x there 1s neN such that T"x1 T"x2 Thus, 1f (), .o Z,(x) ={x}
for all x ¢ Uk>0 T *{a,, ,an}and 1fX and X are 1rreduc1ble subsets of X with
7rX a) wX # (J, then there 1s an rreducible Xk with X =< Xk and X =< Xk
Another simple consequence of (3 3) and (3 4) 1s

LemMMA 1 (See Lemma 1 1n Keller, 1989b) Let T and T be as above, Ae R All
wdentities are to be read modulo null sets Then
(a) T'A=A if and only if =™\ (wA) = A and T™'(mA) = mA
(b) Ac(,_o T7"% 1f and only if 7~ '(wA) = A and wAe() "R

Quite generally, if ® (X, m;)>(X,, m,) 1s a nonsingular, measurable map
between two measure spaces (1e m,(A)=0=>m, (P 'A)=0), we can define the
transfer operator Py, L), > L), by

JPq,f gdm2=Jf (ge®)dm, forallgel,, 395

n>0

Py, 1s a positive, linear operator with || Py||=1 If X, has an at most countable
measurable partition such that & restricted to each element of the partition 1s
byjective, bimeasurable and nonsingular forwards and backwards, then

S0
Pof(x)= 2, Sy

where @’ = d(m, > ®)/dm, 1s the Radon-Nikodym derivative of @ with respect to
m, and m, In particular, Py extends naturally to the space of finite-valued measur-
able functions 1if the partition 1s finite

For ® = T or ® = T we obtain the Perron-Frobenius operators corresponding to
Tand T respectively T’ and T are just the absolute values of the usual dernivatives,

(36)
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and
T'=T'omr and #'= 37
Obviously
P,oP;=P_ .+=Pr.,=PreP, (38)

LEMMA 2 Let T and T be as above

(a) If Pris dissipanve, then so i1s Py

(b) If P;# 1s conservative on A< )A( then so 1s PT on TA

(¢) IfPTh hfor some heL‘A then PT(P h) P, h P, heL,,,, and if Theorem 1
apphes to T, then the system (T, P,h dm) has positive entropy

Proof (a), (b) and the first two assertions of (c) are immediate consequences of
(37)and (38) Letdi= ﬁdr?t, du = P,,I;dm By Theorem 1(c), (), T7"% 15 finite
mod 4, and by Lemma 1(b), its cardinality coincides with that of ()., T~ "% mod pn
Hence (T, u) has positive entropy O

Suppose now that ¥T=0 As T'=To- m, this imphes FT =< 0, and 1n view of the
discussion after Theorem 1, ()2 f" m, ) 1s a regular Markov system, where ¥ 1s
defined as 1n (1 8) In particular, Theorem 1 and Proposition 1 apply to thls system

In § 1 we introduced the relation > on @ namely U-»> Vif V< TU & together
with - 15 a directed graph 4= (@, -), and 1n order to obtain knowledge about T
from information about T provided by Theorem 1 and Proposition 1, we must have
a closer look at ¥ We claim

If (,d)e &™) then ¢,de(T’a, 0=1=<N, 0= <k} (39)

For k =0 this 1s true by definition, and if 1t 1s true for some k=0, then 1t must be
true also for (¢, d)=T(U)n 7 "I P**", where Ue ¥V, e ¢ This reasoning
also shows that there are at most N +1 maximal irreducible subsets of )2, one
corresponding to each a,

Proof of Theorem 3(a) Let )?,, s )2,,_1 (p=1) be those irreducible subsets of X
on which Pj 1s conservative with a unique mtegrable invaniant density I;,, Bj =
U,oo T A’")? (y=1, ,p—1) Let B X\ B Then P; has no integrable
invariant density on B and T~ B B for]—l ,p Set X, = 77()2',) and B, =
w(Bj) (=1, ,p), d,u,, P,,hj dm (j=1, ,p-1) By Lemma 1, the B, are dis-
joint, measurable, T-invariant subsets of (0,1) (modulo m-null sets), and for
J=1  ,p-1,pu, =~myx and B = U,=o T™"7X, modulo m-null sets

In order to apply Corollary 3 we prove h( T|B )= h( T) 0 forall y The inequality
1s trivial For the proof of hm(T) 0 we need a result of Hofbauer (1986, Corollary
1 to Theorem 9)

Let N,[ W] be as in (26), and set X'*’=1J,_ 5o U Then

lim ’lan;lc n 'log N,[X\XV]=0

(For an earlier version see Hofbauer, 1979, Lemma 13 A generalization of this
result, closer 1n notation to the present paper, can be found in Keller, 1989b )
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Now fix £ >0 Choose keN and C >0 such that
NJIX\X*=C e foralln (3 10)

We consider compact subsets K of X such that for each of the fimtely many U € &%
the set U\K consists of two (small) intervals both having one endpoint with U 1n
common Fix IeN Then K can be chosen such that card @,[)A(\K, U]l=2 for all
Ue @ and j=<! Subdividing the integer interval {1, , n} nto subintervals of
length [ (the last one may be shorter) and observing (3 10), we obtain the following
estimate

1+n/l
N"[X\K]s(malx {N,[X\X“"] max card ¥,_ [ X\K, U]})
J= ved™

< (2C651)1+n/l
Taking logarithms on both sides and dividing by »n this yields 1n the it n >0

A A 1
h*[ﬁX\K]5710g2C+e

In the limit /> 00 and £ - 0 we obtain h.( f‘) =0
Now Corollary 3 apphied to (X, T) imphes 1n view of Remark 1

_ I | — 1 A
A(x)=Tim ;log [(T")(x)|=Tm - log [(T")'(x, (0, 1))]

[ | .
= lhim ;log £.'(x,(0,1))=<0 for m-ae xeB,,

whereas the ergodic theorem applied to the system (7, &), i, = l;,n?, and to the
function log |T'| imphes

1 1 A
A(x)=lim ;log [(T")(x)|=lim ;log (T (x,(0,1))]
=Jlog[T’|°w I;jdrﬁ=‘[log|T’| P,h dm

=Jlog|T’|d,u,J for m-ae xeB, (yj=0, ,p-1)

Hence max {A(x),0}=0= A}, for m-ae xe B,, and max {A(x), 0} = [ log |T"| dp, =
Ar,form-ae xeB,j=0, ,p—1

I(x)=0=A7 ,for m-ae xe B, follows from Corollary 3 I(x)= h,(T)form-ae
xeB, (j=0, ,p—1) 1s a consequence of the Shannon-McMillan-Breiman
theorem and the martingale theorem, because ¢ s a finite generdtor for T

1
h,(T)=h, (T, £)=—lm ;log w(Z,(x))+ llm log—(x)

#,(Z,.(X))>

1
—hm ( —log u,(Z,(x))+lo (Z.(0)

=lm — log m(Z,(x)) for pu-ae xeB,

n—->x
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and as B,=J,., T "X,, the same 1s true for m-ae x€ B, The identity h,(T)=
flog |T’| du, 15 the Rohlin formula, and
1
(§n) = Z m (Z) log m (Z) - _I ;log mj(Zn(x)) dmj(x)
Zeg,

—»J I(x) dm,(x)=h, (T, &) as n->o,

because the sequence (n~'log m,(Z,(x))),~o 1s uniformly integrable and converges
m-ae to I(x)=h, (T, ¢), cf Lemma 926 of Krengel (1985)

To finish the proof of (a) of Theorem 3, we note that h, (T, ¢£)=h, (T)>0 for
7=0, ,p—1 The positivity 1s a consequence of the fact that(),., T "% 1s finite
mod u, (see Lemma 1 and Theorem 1) For the identity h, (T, £) = h, (T) we must
show that £ 1s a generator for the system (7, y,) Suppose thls 1s not the case Then
T has a homterval contained 1n supp (u,) = 77X and a fortiort also T has a homterval
contained 1n )2, But we showed 1n Remark 1 that this contradicts the conservativity
of P; on )21

Before we can turn to the proof of Theorem 3(b), we need some more information
about the graph ¥ = (@, -) for ummmodal T The following lemma can be extracted
from Hofbauer (1980, § 1) and Hofbauer (1981, end of §2) Since Hofbauer’s
notation differs largely from ours, we include its proof

As a notational convenience let (a, b) denote the interval of points between a
and b, no matter whether a <b or b < q, and define x for x€(0, 1) by TX = Tx and
X#Xx

LEMMA 3 Suppose T 1s umimodal, and the orbit of ¢ 1s not eventually periodic Let

coo=mf{x<c (T*Y(y)#0Vye(x,c)} (k=1,2, )

(a) There 1s a sequence (1), of integers, 1 =y <k, such that Z ={V, k=0} where

Vo=(0,1), V,=(0,Tc), and V,=(T*;, T%c) (k=2) T* maps (c_,c)

diffeomorphically onto V, (k=1) y,,= lk+1 ifcegV,oand y . =1 1fceV, If

ce Vi, then T*(c_,.,,) =c Observe that % 1s in a natural way isomorphic to
{Vi = Vix{k} k=0}

(b) If c& Vi, let Dy =V, (k=1) If ce Vi, let D =(T*c,c)x{k} (k=1), E; =
(¢, TH¢) x{k} (k=2), andEl =(0, ¢)x {1} Then H® ={(0, c) x{0}, (¢, 1) x{0}},
and for k=1, 9 ={D,} if c¢ V, and 9V ={D,, E;} if ce V,

(¢) Let 0=R;<R,<R,< be the fimite or infinite sequence of those nonnegative
integers k, for which ce V,,, There 1s a map Q N->N,, Q(y) <y, such that
R—-R_,=1+ RQ( - and G has the followmg four kinds of edges
1) D—> E, and D> D, f De %' or f D=E,,

(2) DA'_)Dk-H (k=1),
(3) DR —>ER+1foraII]>1
(4) ERH—»DfoRw ’H—)D De@andj>1
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(d) Ifn=R,+1 and T's%e ‘A/Rj+l ,thenie V,orfe VR,_RO(,)for some 1 with Q1) <j
and wxe(c_,, é_,)

Proof (a) (0,1)e&Z by (31) and (0, Tc)e Z by (32) As ¢_,=0, T maps (c_,,¢)

diffeomorphically onto (0, Tc) Next, (T?c, Tc)€ Z by (3 2), and T? maps (c_,, c)

diffeomorphically onto V, = (T?c, Tc) If ce V,, then clearly T*(c_;)=c Solet1,=1

and suppose there are 1,, , 1 with properties as 1n (a)

If cg Vi=(T*c, T'«c), then Vi, =(T* ¢, T 'c)e X by (32), 1€ o =n+1
Also (T*"")(y)#0 for all ye(c_s,c), whence c_uipy=c_, and T**' maps
(¢-(k+1), ¢} diffeomorphically onto V.,

If ce Vi, then Vi, =(T*"'¢, Tc) and (T 'c, Tc) are n £ by (32), 1€ iy =1
Obviously T**' maps (c_(k+1y, ¢) diffeomorphically onto V.., Observe that k=
R, +1 for some R, from (c), =1 We must show that (T"*'¢, Tc)e %, and 1n fact
we will show a bit more, namely that

=R —R_,=Rg,+1 (311)
for some nteger Q(j), 0=Q(y)<; Let m=R_,+1 Then cgV, for 1=
m+1, ,k—1,whence y =k—m=R,—R,_, (311) follows once we have shown
that ce V, = T"(c_,, c) But suppose this 1s not the case Then c_(,.,,=c_, As
T % (c_i, €) = Vi =(T"c, T*c) and as T™(c_+1)) = ¢ by inductive hypothests,
it follows that T™"'(c_y, c_x+1))=(T"%c,¢), whence T™(c_y,C_k+1)) S
(c—(yrny» €)=(c_,,¢) Hence V,=T"(c_,,c)2T" "(c_, c_ks1) =(T*¢,c), a
contradiction to ¢ £ V, because the orbit of ¢ 1s not eventually periodic

In both cases, if ce V., then Tk“c_(kﬂ) = ¢ This fimshes the inductive proof
of (a)

(b) 1s an easy consequence of (a) and of the defimtion of @, and (c) follows from
the proof of (a) and (b) and from (3 11)

For the proof of (d) we use the structure of ¢ as descnbed n (c) We simply list
all possible backwards-paths of length n n ¥ starting at DR+l or ER+1 n=R +1
steps may either lead straight down to Vo, or there 1s some minimal m < n such
that at the mth step back we arrive at some ER,+l where 1 1s such that Q(1) <) As

m=R,+1-(Ry,,+1)=R,~Ro,),
we have 1in view of n=R, +1
n—-m=R,,+1=R,—-R,_,,
such that X e VR “Roi, S0 we end up with X 1n Vo or in Ijk _+15 ¢f (311) In the
first case, wxe(c_,,, ¢_,) by (a) In the second case, X € (c_(r,,+2)» c_(Ro( +2)) as

TROU’“xe Eg.1=(c, TRow™¢) x {R,+1}, and similarly aTRew™ e
(C—(n—RQ(,,—I)’ Cﬂ(n—RO(,,—l))a such that 7'rx € (C_,,, (,/‘,") O

Remark 2 If T 1s umimodal, and if ¢ 1s eventually periodic, then % and ¥ are finite
The numbers 0= Ry, < R, < R, < can be defined as before, however

Proof of Theorem 3(b) Suppose the orbit of ¢ 1s not eventually periodic By Lemma
3(c), ¥ either has an infimte chain of fimite irreducible subsets

X =X, <X,=< (312)
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or a finite chain of irreducible subsets
X, < =X, (313)

where all sets 1in the chain but the last one are finite (By a finite irreducible set we
mean an irreducible set which 1s the union of a finite number of equivalence classes
Note also that the numberning )?1, X,, has nothing to do with the numbering
used at the beginning of the proof of Theorem 3(a) )

If the orbit of ¢ 15 eventually periodic, then Y1s finite, and 1t 1s easily seen that
there 1s a finite chain of finite irreducible sets as 1n (3 13)

In case (3 12), P; 1s dissipative on all )2,, whereas 1n case (3 13), P; 1s dissipative
on X s s X,_, , but may be conservative on )25, see Theorem 1 Let W be a finite
unon of sets from ¥ We claim that 1n any case

m ( M f""W) =01f W does not contain a maximal irreductble set (314)

n=0

In order to prove this claim suppose first that W= X, for some nonmaximal X,
By construction of @ and by Lemma 3, there are /eN and a compact K < W such
that T* (W\K) c U;>- X As Pj 1s dissipative on nonmaximal X,, (3 14) follows 1n
this case For general W we may now assume w log that W Is contained 1n a
maximal component XS but W XS If P; 1s dissipative on XS, then a similar
reasoning as above applies If P 1s conservative on )?s, then T 1s Lebesgue-ergodic
on )? by Theorem 1, and (3 14) follows as m()?\W)>0

Hence, either Pj; 1s dissipative on all of X or m(X\UP0 _"X) 0 In any
case, p=1 in part (a) of the Theorem (cf the defimtion of p at the beginning of
the proof of that part) The rest of (b) 1s a consequence of the following Lemma,
which 1s a shight varnation of Lemma 3 6 of Nowicki (1985)

LeEMMA 4 Suppose T 1s F-unimodal and T"(c)#0 Let
1
A, = mf{; log (T"Y(»)] y=T"y, n= 1}

Then X(x)= A, form-ae x

Before we prove the lemma, let us see how 1t fimshes the proof of Theorem 3(b)
and how 1t imphes Corollary 2(4)
Observe that

A,=Ai(x)=A%, for m-ae x (315)

If A7,>0, then A+ =A%, and everything was proved 1n (a) If A,, <0, then T has
a umque strictly stable periodic orbit {z, , T 'z} which attracts m-ae x, and
A(x)=A(x)=A(z)=A,=Ay for m-ae x, see Proposition 1157 of Collet and
Eckmann (1980) The remaining case 1s where 0<A,<X(x)<A}, =<0 But then
A(x)=A_,=A%,=0=A; for m-ae x O
Proof of Corollary 2(4) Under the assumptions of this Corollary, A(x) = A, =log 8 >
0 for m-ae x, whence A+>0
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Proof of Lemma 4 If T has a (possibly one-sided) stable periodic orbit, then
A(x)=A, for m-ae x as noted above So suppose that T has no stable periodic
orbit For n=1 let
H'={xe(0,1) T'xeg(x,X)Vi=1, ,n-1, T"'xe(x, X)}
K" 1s an open set, and each connected component of 1t 1s of the form (u, §) with
T"u=u and T"v=v Moreover, T" 1s monotone on every component of ¥", in
particular dist (¥", ¢})>0 This 1s Lemma II 5 6 of Collet and Eckmann (1980)
Fix a component (u, 9) of ¥" As $T=0, |(T")| has no positive strict local
minimum on (u, 6),1¢€
inf {[(T")(x)| xe(u, 8)}=mn {{(T")'(u)],|(T")(5) (316)
Let M =sup {|T'(x)/ T'(¥)| x€ (0, 1)\{c}} As T"(c)#0, we have 1=M <o (cf
Lemma 34 of Nowicki, 1985) Hence |(T")(5)|=|( |T'(5
M [(T")(Tv)| |T'(v)|=M |(T")(v)|, and (3 16) implies
log [(T")'(x)|=—log M +nA, forall xeX" (317)

Suppose now that x € (0, 1) 1s such that there are integers 0=n,<n,<n,<  with

(n—n)>0as >0 and T"xeHK"+ ™ forall1=0 (318)

Then

log [(T™)'(x)| = Z log [(T" ") (T"1x)]

= Z (_logM+(nj_nj—l)/\n)

=—1 logM+nA,_,
whence A(x)=Tim,,, n; ' log [(T™)'(x)|= A,
So we have to show that (3 18) holds for m-ae x By definition of %" and by
the fact that dist (¥, ¢) > 0 for all n, 1t suffices to show that

cew(x) form-ae x (319)

One way to realize this 1s to note that ¢ £ w(x) imphes A(x)>0 (see Theorem
11 5 2 of Collet and Eckmann (1980) or Theorem 1 3 of Misiurewicz (1981), which
1s the oniginal source) Hence, if m{x c¢¢ w(x)}>0, then AF,>0 by Theorem 3(a),
and T 1s Lebesgue-ergodic on )AL (for )2‘ see (3 13)) In particular, 7T"% comes
arbitrarily close to ¢ for ri-ae £ 1e cew(x) for m-ae x, a contradiction

Another proof of (3 19), which does not rely on Misiurewicz’s theorem, uses
Lemma 3(d) m-ae trajectory 1s unbounded 1n the sense that it leaves any finite
union W of elements of £ at some time (This 1s (314) ) In pamcular for any
n=R +1 and m-ae Xe€(0,1)x{0} there 1s k=n such that T*ie V,, Thus, by
Lemma 3(d), T" "x= wf“"‘"(x, (0,1))e(c-n, é-,) As n=R,+1 can be arbitrarnly
large, c€ w(x) for m-ae xe(0,1),1e (319) O

4 Shadowing by the cnitical orbit
For the proofs of Theorems 2, 4, and 5 we need some finer information about how
typical trajectortes of ¥-unimodal maps (typical in the sense of Lebesgue measure)
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are shadowed by 1mitial pieces of the critical orbit During this whole section T 1s
an ¥-umimodal map and T 1ts canonical Markov extension In order to avoid the
distinction between finite and infinite Markov extensions, we also assume that ¢ 1s
not eventually periodic If 1t 1s, Theorems 2, 4, and 5 follow easily from the work
of Misiurewicz (1981) or can be proved 1n a straightforward way along the lines of
this section A
Let E =U120 Eg .11
LemMA 5 For M eN and ¢ >0 there are 5> 0 and a compact set K < X such that
(1) x,yeZeé, 1=M, |x—y|>e=>|T'x—T'y|>6
(n) xe Vk\k, k= M=dist (7X, endpoints of V)< 8
(m) $eEgo\K, R+1=M=>T%eE 1=1, ,M)
Proof Given M and g, there 1s 8>0 satisfying (1), because the monotone
branches of T are strictly monotone Now the existence of a compact R satisfying
(n) and (m) 1s obvious, since ce Vg, for all j by definition, and since
xe EARIH\IZ implies that T'% 1s close to the endpoint TRew*'*'¢ of VR011)+1+' for
=1, M O
Next we introduce the following first entrance stopping time For xeX let

r(£)=min{n=1 T"%e E} 1f such an n exists, 1)
41
7(X) =00 otherwise
Observe that 7(X) <oo unless T"wX€( )., (¢_x, ¢_i) for some n In particular, 1f T
has no stable periodic orbut, then (), ., (¢_y, ¢_x) ={c}, and 7(X) <o except on the

countably many preimages of ¢ Define recursively

n(#)=7(%) and 7,.,(£) =7 (£)++(TO(£)) (42)
Define also numbers p,(X) by
pa(£) =y of TR e Eryy (n=1) (43)
Then
R,..6=Ropent (T V() and p,(£)=Q(p.(AN+1  (44)

Finally let
a'n(f) = Tn(f) _(Rp,,(v?)_ Rp,,(e)—x) = Tn(f) - Ro(p,,(i))— 1= Tn—l(f) (4 5)

Then, skipping the argument X, we have

d, =1,—0,=17(T"%)+ Ry, +1=R,, +1 by (44), (46)
and
f"ﬂfef/j where j=R,+land 1=p,—10r Q(1)=p,—1 “47)
Now Lemma 3(d) implies
Tonf=nT%e(c_q, ¢ q) 48)

This describes exactly in which sense the critical orbit 1s shadowing the trajectory
of X from time o, to time 7,.,

The following theorem relates the quality of shadowing of a typical trajectory
by mmitial pieces of the critical orbit to the classification of the Perron-Frobenius
operator P;
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THEOREM 6

(a) Pj 1s dissipative if and only f 04y —0,_, >0 as n>© r-ae

(b) P; 1s conservative on the maximal wrreducible subset of X with a nonmintegrable
tnvariant density if and only if im,, .o (0441~ 0,_y) <0 but g,/n—> as n >
m-ae

(¢) Pj; s conservative on the maximal irreducible subset of X with an nvanant
probability density h if and only if m, . o,/n is finite m-ae In this case the
it 1s 1/ 2(E) where i =h m

Proof In view of Theorem 1 1t 1s enough to prove the ‘only if” implications

(a) For MeN choose KcX as in Lemma 5 Fix £ and suppose that
max {R, ,R, .} <M for some n By Lemma 5(m), T(%)e K Hence, 1f Ps 1s
dissipative, then im,, ., max {R, , R,  }= M m-ae,and since M €N was arbutrary,

n+1

max{R,,R,  }»>oasn->© forrm-ae X (49)

By (4 5) and (4 6),

01— 0y =Tp1— R, *tR, ., 1~ Tunt R, +1
=R, ., 1+1 (410)
Hence (4 9) implies
Oy~ 0p=R, _+R, —1+2

=3R, +R,)>0asn->0 forrm-ae %X

Pn+1

(b) If P;#1s conservative on the maximal irreducible subset of X then T'1s Lebesgue-
ergodic on this set (see Theorem 1(3)), and there 1s some j > 0 such that for rii-a e
X holds p,(X)=7 and p,(£)=Q()+1 for infinitely many n, 1e
Im, .. max{R,,R, , } <o

Next observe that o,/ n - oo will follow from 7,,/n—- o So fix M €N and choose
KcX asin Lemma 5 Let IZM = ,A:o T~K Birkhoff’s ergodic theorem 1mplies

T

hm— ¥ xg,(F'%)=0 for -ae %,

n=>0 T, =1

such that

=Tm — ¥ xgk, (T'%) for rae £ (411)

A=>0 Ty =1
By definition, T'%cE 1f and only if 1=7, for some k So we consider
triplets o= T™-1X, § = T™X, and w= T™+%, and we assume that r(d)+r(d)<M
By (44) and Lemma 3(c), R, =Ro, t7(0)=R,—R,_,—1+7(d)<

R, — Ry, )t 7(0)=(ii)+7(#) <M Hence, by Lemma 5(1n),

weK or 7(W)>M
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But if we K and 7(#)+7(8) <M, then 4, 6, we Ky, = U]'ZO TR Therefore, if a
triplet &, 6, w contnibutes to the sum Y2 | xz\g,,(T'%), then 7(#) + 7(d)+ (W)= M,
whence
—n 3 n
Im —=— m-ae
n->o T,
by (4 11) As M €N was arbitrary, this finishes the proof of (b)
(c) If P; has an invaniant probability density h on the maximal irreducible
component of X, then (T, &) 1s ergodic (i = hr), and
him —= hm — i xe(T'$)=4(E)>0 for r-ae %
ns© T, s T,
by Birkhoff’s ergodic theorem The observation that 7,_, = o, = 7, (see (4 5)) finishes
the proof a

Proof of Theorem 2 In view of Theorem 3(b) and its proof we must consider the
two cases that P; 1s conservative on some maximal )A(S and that Pj 1s dissipative
on all of X In the first case, the trajectory of rm-ae Xe X finally enters X, and
follows 1n the sequel the regime of the Lebesgue-ergodic f‘lx In particular, rfi-a e
trajectory 1s dense 1n )?S, whence w(x) =cl (7X,) for m-ae x¢€(0, 1) (observe (3 3))
As X, 1s maximal, there 1s n > 0 such that X, = ken Ve=U k=0 TV, By ergodicity
of T on )?s, ‘7,, N f”"V,, # & for some k>0, whence V, T*V, % This shows
that 7X, = W= TV, 15 a finite union of intervals

Now consider the case where P; 1s dissipative If T has a stable periodic orbit,
then w(x) coincides with this orbit for m-a.e x, and nothing remains to show
(Proposition I15 7 of Collet and Eckmann, 1980) Hence, we may assume that the
preimages of ¢ are dense 1n (0, 1), see Corollary II 55 of Collet and Eckmann,
1980) In particular,

v, =max {diam (Z,(x)) x€(0,1)}>0 as n->© (412)

In view of (3 14), m-a e trajectory 1n X 1s unbounded, 1€ sup,.o R, z) = for
m-ae X Fix such an £ As d,=R, +1 1s unbounded, 1t follows from (4 8) that
{T"¢ n=0}< w(wx), whence

K;=cl{T"¢c n=0}c w(x) for m-ae x (413)
For the converse inclusion consider the sets
L=1(%)={;=0 3In=0sth #T’feZ(T"c)}
c{y=0 dist (T’ (nX), K1) =< %}

Pn+1

and
Ix=I\X) ={o,,0,+1, ,0.,+Ro,,.,)—k}
={o,, 0,+1, ,7,5,—1—k}
In view of (48), Ix< I, for all n

For all keN and m-ae %, |
segment and of the sets

Ji={op1+ Ry, .nt1-k ,0,—-1} (n=1).

I} covers all of N except of some fimite 1mitial

n=1
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Fix M eN, ¢ >0, and choose K < X and 6> 0 as in Lemma § IfjelU, -, In<s v,
then dist (ﬂ’f"fc‘, K:)=1vym As Pioas dissipative, there 1s o= [o(X) eN such that
T'ie )?\12 for I=1, If Jy,# for some n so large that 7,,,=1,, then g =
Ro,.pt2=Mandy = Trn*lfe Vq, see Lemma 3(c)(4) Now Lemma 5(u1) implies

dist (wy, endpoints of V,) <34,
1e, 1n view of Lemma 3(a),
erther (a) |7y — Te|< 8, or (b) |7y —T%|< 8
Fix jeJy In both cases, Lemma 5(1) implies that there 1s zEU,'Z1 T~ "{c} such
that |T’(mX) — z| <& This 1s obvious in case (a), and 1t follows in case (b) upon

observing that 7,,,+1~-g=7,.,—~1 =Ry, = 0nr1 by (45)
Putting everything together, we see that

w(mX)c{y dist(y, Ky)=<yu}u U(e, M)

where U(g, M) denotes the e-neighbourhood of U,Ai, T "{c} In the limit e >0
(for fixed M) this yields

M
w(mx)c{y dist(y, Kr)=ym}pu U T '{c},
r=1
and 1n view of (4 13) and (4 12) we have 1n the limit M - c©
Krcow(x)e KryulJ T "{c} form-ae x
r=1

But by Corollary 1 from § 1, w(x)< K+ or w(x) 1s the closure of an open set for
m-ae x, whence w(x)=K; m-ae O
Proof of Theorem 4 If T has no absolutely continuous invariant measure of positive

entropy, then P; has no invanant probability density by Lemma 2(c) Hence, if for
xe X and NeN we let n(N)eN be such that o,(n,=< N <, n)+1, then

n(N) _n(N)

-0 as N->o© nm-ae
N U"(N)

n—1

by Theorem 6 Denote u,=n"'Y'_ 8. If we set g,=0, then
1 N-1 "(N)Uk_ak—l N—'O‘,,(N)
(3 E,rem (£, 257 b T ) 010

as N - oo for each ¢y € C([0, 1]) by (4 8), and some routine arguments involving the
weak compactness of w*(8.) show that w*(8,) < concl (w*(8,)) for m-ae x
As
1 n—1 1 n—1
=X meT™ =J <— 2 5rw) dm(x),
n =90 n,=o
stmilar routine arguments show now that w*(m) < concl (w*(8,))
Sketch of proof of (113) For a>0, £¢>0 and large neN there are not more than

27*) different L, R-strings of finite length with complexity <n(a +¢) Hence the
total measure of the pomnts x with logv(Z,(x))/log2>a+2¢ and
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k(w(x), ,wy(x))=n(a+e) s, for large n, bounded by 27, and the Borel-
Cantelli lemma yields I,(x)/log 2= a +2¢ for v-ae x with K(x)=<a Let £ >0 and
observe that « > 0 was arbitrary ]

Sketch of proof of (114) Let K(x)=lm, .o n, 'k(w,(x), , w, (X)), and assume
wlog that n;' Zf'{ol 81~ v weakly as j> oo The distribution of blocks of length
I'im wi(x), ,w,(x) s, for large , close to the distribution of these blocks under
v Fix a prefix-code from the blocks of length [ to {0, 1}* with average length close
tol h,(T)/log2 Making [ larger, the average length per block size I can be made
arbitranly close to h,(7T)/log 2 using some standard coding techniques This yields
a coding of wy(x), ,w,(x), which leads to K(x)=h,(T)/log2 O

Proof of Theorem 5

(1) If A;>0, then T has the unique absolutely continuous mnvariant probability
measure u, and K(x)=h,(T)/log2 for m-ae x follows from (113), (114) and
from Theorem 3

(2) If A+ =0, then T has no absolutely continuous invariant probability measure
of positive entropy, whence P; has no invariant probability density (see Lemma
2(c)), and n/o,>0 m-ae by Theorem 6 Let n(N) be as in the proof of Theorem
4,1e o, ny=N<o,n)+1 In view of the shadowing property (4 8), the first N
digits w,(x), , wy(x) of the itinerary of x can be recovered from the numbers
01,0,— 0, ,0,ny—OTn(ny—1 and N provided the 1tinerary of c 1s given as addi-
tional information There 1s a prefix-code over the alphabet {0, 1} associating to
each positive integer n a codeword of length at most 2(1+1og, n) (actually (1+¢) x
(1+1og, n) 1s possible) Hence, for fixed M eN and with o,=0,

1
Nk(w, , ,wy|itinerary of ¢)

iA

2 n(N)
ﬁ( Y (i+log, (o, —0a,_;))+1+log, N)

=1

2 [nN) o —0,_
Sﬁ( '};l <1+log2 M+—1‘/I—llog2 e>+1+log2 N)

N n 1+1 N
52((1+log2 M)%—)+log2 e (]TVI(IA\II)+ ?52 )

n(N)+log2 e_*_1+log2 N)
Un(N) M N

s2((1+log2 M)

2log, e
atd -7 2
M

As M e N was arbitrary, this proves the claim
(3) If T does not have sensitive dependence, we are 1n case I or II of the
Guckenheimer classification In case I, T"c tends to a stable periodic orbit, whence
the itinerary of ¢ 1s eventually periodic, and 1n particular K(c)=0 In case II,
K(c) =0 can be deduced e g from the infinmite *-product structure of the kneading
sequence (the itinerary of ¢} Another possibility 1s to apply (1 14), which says that

as N->oo for m-ae x
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K(c)=h, (T)=0, where {vr} =w*(8,) 1s the unique 1nvariant measure on the
attractor O
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