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1. Introduction. In (1) Armentrout raised the question "Is there a 
monotone decomposition of Ez into arcs?"1 The analogous question for E2 

was answered negatively by Roberts in (8). Our aim in this paper is to give 
a partial answer to Armentrout's question by proving the following theorem. 

THEOREM 1. Suppose that G is an upper semi-continuous decomposition of 
Euclidean n-space En (n ^ 1) so that there is a positive integer m such that 
if g is a non-degenerate element of G, then g is a polygonal arc of the form 
A \A2 . . . Am. Then, if g is a non-degenerate element of G and e is a positive 
number, there is a degenerate element of G which lies within e of g. 

The next theorem is one whose proof is analogous to that of Theorem 1. 

THEOREM 2. We change the statement of Theorem 1 by requiring that each 
non-degenerate element of G be a compact continuum that is star-like relative 
to a unique point. 

Using an indirect argument, we prove Theorems 1 and 2 by showing that 
in either case, an application of the following theorem yields a contradiction. 

THEOREM 3. Suppose that Gf is an upper semi-continuous decomposition of a 
closed geometric n-simplex T such that (1) each element of G' is compact and 
(2) there is an open subset U of B, the boundary of T, such that every element 
of G' which intersects U is a point or a straight line interval that intersects B 
in only one point. Then, some element of Gf is a subset of Int T. 

In (3) Bing has shown that if G is an upper semi-continuous decomposition 
of Ez having only countably many non-degenerate elements, then E2/G is 
homeomorphic to Ez if G satisfies one of the following conditions: (1) each 
element of G is point-like and the sum of the non-degenerate elements is a 
Gb\ (2) each non-degenerate element of G is star-like; (3) each non-degenerate 
element of G is a tame arc. In (4) Bing has given an example of an upper 
semi-continuous decomposition G of £ 3 into points and a Cantor set of straight 
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line intervals such that Ez/G is considered to be probably topologically 
different from Ez. In (6) McAuley has shown that if G is an upper semi-
continuous decomposition of Ez into points and straight line intervals and 
the intervals of G point in only countably many directions, then Ez/G is 
topologically Ez. For earlier work and basic theorems on upper semi-con­
tinuous decompositions, see Moore (7) and Whyburn (9). For an excellent 
expository paper with a fairly complete bibliography, see Armentrout (1). 

2. Definitions. The statement that G is an upper semi-continuous decom­
position of the topological space X means that G is a decomposition of X such 
that if g 6 G and U is an open set in X containing g, then the union of the 
elements of G contained in U is open in X. We consider here only decom­
positions into compact sets. A monotone decomposition of a space is an upper 
semi-continuous decomposition into compact continua. The decomposition 
space X/G associated with a space X and an upper semi-continuous decom­
position G of X is the space whose points are elements of G and whose open 
sets are those subsets H of G such that \JH is open in X. The natural map­
ping P: X —•> X/G is a closed, continuous mapping. The decomposition G 
will be said to be continuous at the element g of G provided it is true that if 
C is a finite proper cover of g by open sets in X, then there is an open set 
V containing g such that every element of G which intersects F is a subset 
of U C and intersects every member of C. A continuum M in En is said to 
be point-like provided En — M is homeomorphic to the complement of a 
point in En. A decomposition G of En is said to be point-like provided every 
member of G is a point-like continuum. 

An arc M in En will be said to be polygonal provided M is the union of a 
finite number of straight line intervals. We denote such an M by the symbol 
A\A2 . . . Am, where each AiAi+i is a straight line interval and where no 
straight line contains Ai-iAt and AiAi+i for any i, 2 rg i ^ m — 1. A com­
pact continuum g is said to be star-like provided there is a point P of g such 
that if X is a point of g — P, then interval XP is a subset of g. Here, let us 
say g is star-like relative to P. If g\ and g2 are two point sets in the metric 
space (X, d) the Hausdorff distance H(gu g2) from gi to g2 is lub{d(x, gi)\ 
i = 1 or 2; x £ gi U g2}. The word compact is used in the "finite cover" 
sense. 

3. Some lemmas. The first lemma is an immediate consequence of 
Theorem 1 of (8). An analogous theorem is also proved by Bing in Theorem 
2 of (2). 

LEMMA 1. Suppose that G is an upper semi-continuous decomposition of the 
complete metric space (X, d) such that each element of G is compact. Then, the 
set K of all elements of G at which G is continuous is a dense G& in X/G. 

We now prove a lemma in slightly more general form than is needed here, 
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but which should be useful in attacking the problem of showing that there 
is no monotone decomposition of En into polygonal arcs. 

LEMMA 2. Suppose that AXA2 . . . An is a polygonal arc in Ex and e is a 
positive number. Then, there is a positive number h such that if Bi, B2, . . . ,Bm 

is a polygonal arc whose Hausdorff distance from A\A2 . . . An is less than h, 
then (1) m §; n, and (2) if m = n, then d(Au BL) < e, i = 1, . . . , n, or 
d(At, Bn+1-i) < e, i = 1, . . . , n. 

Proof. Let k denote a positive number less than each of e, 4rld(Aiy A2), • . . , 
4rld(An-i, An). There exist points Xi} Y u i = 1,. . . , n — 1, such that 
X^ Yi £ AiAi+i and d(Au Xt) = d(Yu Ai+i) = k. There is a positive 
number r such that (1) r < k, r < e — k, (2) r < 4rld(AiAi+ll AjAj+1), 
lSi<iJrl<j<n} and (3) no straight line intersects 

CI N(AtYu r),aN(Ai+1,r), and Cl N(Xi+1Ai+2, r) , i = 1, . . . , n - 2. 

(If M C EN, then JV(M, r) = \X\ d{X, M) < r}.) Also, let C = {gi, . . . , gk\ 
denote a simple chain of spherical open sets of the form N(X, r) sucli that 
(1) each gi is centred on a point of A\A2 . . . An and intersects g:] if and 
only if \i — j \ S 1, and (2) each At is the centre of some gj} gi = iV(/li, r) 
and ĝ  = N(An, r). Note that C covers A±A2 . • . ^4re. Let /̂  denote a positive 
number such that CI N(AXA2 . . . An, h) C U C. 

Now suppose that B\B2 . . . Bm is a polygonal arc such that H(BiB2 . . . Bm, 
A\A2 . . . An) < h. Let Xi denote a point of BiB2 . . . Bm C\ gx and F„_/ 
a point of B±B2 . . . Bm C\ gk and suppose, for example, that Xi precedes 
F„_i/ in the order from B\ to Bm on BXB2 . . . Bm. 

Let Yi denote the last point of subarc X\ Fw__/ of BXB2 . . . Bm on 
Bd N(AiYi, r) . Let X2 denote the first point of arc F / F„_/ which lies 
on Bd N(X2AZ, r), and let Y2 denote the last point of X2' Y„_i' on 
Bd N(A2Y2y r). Consider a continuation of this process to obtain X-/, 
F3'', . . . , Xn-i. Now, if we let BniBni+i denote an interval of BtB2 . . . Bm 

containing X/, then we see that n± ^ n2 ^ . . . ^ wm_i. But also, if some 
nt = ni+i, then BniBni+1 intersects Cl N{AtYu r), Cl N(Ai+1, r), and 
CI N(Xi+iAi+2, r), a contradiction. Hence n\ < n2 < . . . < nm-i; thus 
m ^ n. 

Now, suppose that m = n and, as above, that JiY precedes F w _ / in the 
order from Bx to £ m on BXB2 . . . Bm. Some BH lies between F ^ / and X/ 
on 5 i ^ 2 . . . Bm for i = 2, . . . , m - 1. Clearly, the open ball N(A h k + r) 
contains the segment Y^iX/ of B\B2 . . . Bm, i = 2, . . . , m — 1, and has 
radius less than e; which implies that d(BjiyAi) < e. Now let BPBP+1 con­
tain F / , where p is as small as possible, and let BgBQ+± contain X„_/, where 
q is as large as possible. If p ^ 2, we see that j m _i ^ m = n and that 
^ + 1 > m, a contradiction. Thus p = 1, and analogously, g = m — 1. 
Therefore, we see that d{Au Bt) < k + r < e, 2 ^ i ^ m — 1. If Bi is not 
an element of gi, then we find that there must be two points of B\B2 on 
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Bd giy where only one of them can belong to In t (UC) . Analogously, Bm £ gk. 
This completes the proof of Lemma 2. 

The next lemma is not really needed in this paper, but would be of use 
to anyone attacking the problem (stated above) of filling up En with poly­
gonal arcs. 

LEMMA 3. Suppose that G is an upper semi-continuous decomposition of En 

such that each non-degenerate element of G is a polygonal arc and that G\ is a 
collection of non-degenerate elements of G which is open in X/G. Then, there 
is an open subset V of G\ and a positive integer N such that if g = A\A2 . . . Am 

is an element of V and G is continuous at g, then m ^ N. 

Proof. Suppose the contrary. Let gi = AnAu . . . Alni denote an element 
of G\ at which G is continuous. By Lemma 2 there is a positive number 
hi < 1 such that (1) CI N(gi, hi) C U d and (2) if g is an element of Gi 
lying in N(gi, hi), then g = BJ52 . . . Bv, where p ^ nx. Let g2 = A 2XA 22 . . .A 2m 

denote an element of Gi such that (1) G is continuous at g2, (2) g2 C N(gi, 2~lhi), 
and (3) n2 > n\. There is a positive number h2 less than one half the distance 
from gi to g2 such that CI N(g2, h2) C N(gi, 2~lhi) and such that if g is any 
element of G lying in N(g2, h2), then g = BiB2 . . . Bn, where n à n2. Now, 
let g3 = AziA%2 . . . Aznz denote an element of Gi such that (1) G is con­
tinuous at gz, (2) g3 C N(g2l 2_1^2), and (3) nz > n2. Consider a continuation 
of this process to obtain A3, gh w4, A4, g5, n$, . . . . The continua gi, g2, . . . 
converge to a subcontinuum of an element g = BiB2. . . Bm of G. Since 
g C N(gpy hp) for each positive integer p, then m *t p for p = 1 , 2 , . . . . 
This is a contradiction. 

LEMMA 4. Suppose that G is an upper semi-continuous decomposition of En 

such that each non-degenerate element g of G is a compact continuum which is 
star-like relative to exactly one of its points, say Pg. Then, if G is continuous 
at the non-degenerate element g and e is a positive number, there is a positive 
number 8 such that if h is an element of G and H(g, h) < 8, then d(Ph, Pg) < e. 

Proof. Suppose the contrary. There is a sequence hi, h2, . . . of elements 
of G such that (1) H(g, hv) < p~l for p = 1, 2, . . . , and (2) there is a point 
Q of g distinct from PQ such that Phl, Ph2, . . . converges to Q. This means, 
however, that if X is a point of g — Q and k is a positive number, there is 
an integer N such that if p is an integer larger than N, then (1) there is a 
point Xv of hp such that d(Xpj X) < k, (2) d(Q, Php) < k, and (3) interval 
XpPhp C hp. This implies that interval XQ C g, and hence that g is star-like 
relative to Q, a contradiction. 

4. Proofs of the theorems. 

Proof of Theorem 3. Suppose that every element of G' intersects B. We give 
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the proof only for n > 1. Suppose also that W is a convex open subset of U 
which is a subset of a face F of T and such that (1) the boundary of W 
relative to B is an (n — 2)-sphere S of radius r, (2) W C U, and (3) ^ C is 
an interval in Gf, where C is the centre of S. (Note that if there is an open 
subset Woî [/such that every element of G' which intersects Wis degenerate, 
then the proof given here can be simplified considerably to cover that case.) 
Let m = lub{d(P, Q)\ PQ G Gr and Q G IF}, and let b denote a positive 
number less than the length of A C. 

We now define a mapping/: T —> P as follows: If X belongs to an element 
g of G' such that g intersects B — W or if X G 5 , then l e t / (X) = X. Define 
P: W->El such that if Q G W, then P((?) = 6 + r - ^ w - b)(r - d(Q, S)). 
If X belongs to an interval PQ in G', where Ç ë F , then (a) if d(P, (?) ^ P(<2), 
then l e t / ( X ) = X, and (b) if d(P, Q) > F(Q), let R denote the point of 
PQ such that d(P, Q) = F(Q) and (i) let f(X) = R for X G P P , and (ii) 
let / ( X ) = X for X G PC-

We observe t h a t / maps no point onto A and t h a t / ( X ) = X for X G P . 
We now proceed toward showing t h a t / is continuous. Let Xi, X2, . . . denote 
a sequence of elements of T converging to a point X0 of P and suppose that 
Xi G g, G G', i = 0, 1, 2, . . . . 

Case l . / (X 0 ) = X0. Since/(X) ^ X, only for some elements of T belonging 
to intervals of G' which intersect W, we may as well assume that each gt 

(i = 1, 2, . . .) is of the form PtQu where Qt G W and t h a t / ( X , ) ^ Xt. In 
fact, let us assume that there is a positive number e such that d(Xuf(Xi)) ^ e, 
i = 1, 2, . . . . We first show that go intersects W. For, if g0 intersects B — W, 
then some subsequence of Ci, Qi, . . . converges to Ç G go ^ (P — W). Thus, 
for some large n we have that m — e/2 ^ F(Qn), and since we also know 
that d(Xn, Rn) ^ d(Pnj Qn) - d(Rny Qn) (Rn = f(Xn)) and 

d(Pn, Qn) - d(Rn,Qn) = d(Pn, Qn) - F(Qn), 

we then know that d(Xn, Rn) ^ d(Pny Qn) - (m- e/2) ^ e/2. This is a 
contradiction, so we know that go intersects W and is of the form PQQO, 

where Qo G W. 
Since G' is upper semi-continuous, then Qif Q2, . . . must converge to Qo, 

and since d(Xn, Qn) > e/2 + F(Qn), n = 1, 2, . . . , then 

d(X0, Ço) ^ e / 2 + P((2o), 

which implies that / (X 0 ) ^ X0, a contradiction. Since d{Xuf{Xi))-
j>Q 

and d(X„ X0) -> 0, it follows easily that f(Xt) -» X0 = / ( X 0 ) . 

Case 2. / (X 0 ) T^ X0. Since go must be of the form P0Qo for Ço G W, then 
there is an integer X such that if n is an integer >N, then gn does not inter­
sect B — W. Otherwise, there would exist a sequence of points of B — W 
which converges to a point of go, and go contains only Q0 in common with P . 
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So we may as well assume that each gt (i = 1, 2, . . .) is of the form P\Qt. 
Furthermore, since Xt —> X0, <2* —> Co, and d(Xo, QQ) > F(Q0),we may as 
well assume that d(Xn, Qn) > F(Qn) for n = 1, 2, . . . . As above, for 
n = 0, 1, . . . , let Rn denote the point of PnQn such that d(Rn, Qn) = F(Qn)\ 
Rn =f(Xn). 

Suppose that Rni, Rn2, . . . is a subsequence of Ri, R2l . . . which converges 
to a point R' of P0QQ. But d{R!, QQ) = \imp^œd(Rnp, Qnp) = \imv^F(Qnv), 
and this limit is F(Q0), which implies that R0 = R'. Therefore f(Xt) —>/(X0) ; 
this completes the proof of the continuity of / . 

Let g: T — A —> B be the radial projection from A and let r = gf: T —> 5 . 
Since g is also continuous, it follows that r is a retraction, which is impossible. 
We conclude then that some element of G is a subset of Int T. 

Proof of Theorem 1. Suppose that every element of G which intersects 
N(g, e) is non-degenerate. By Lemma 1, there is an element h = AiA2 . . . Am 

of G such that fe C N(g, e) and G is continuous at h. 
There is a positive number 5 such that (1) ô < 4r1d(Ai} Ai+i), i = 1, . . . , 

m - 1, and (2) b < 4rld{AxW, A*AZ . . . Am), where 17 = (Ax + 4 2 ) / 2 . 
There is a positive number k < 5 such that if ^ i 5 2 . . . Bm is an element 
of G which intersects N(AiA2 . . . ^4m, k), then 

Jff(^i42 . . . ^ m , BXB2. . . 5 m ) < Ô and d(AuBt) < ô, i = 1, . . . , m. 

We let r denote a closed solid geometric ^-simplex such that (1) the dia­
meter of T < k} (2) Ax G Int T, and (3) ^4^42 intersects B, the boundary 
of T, in a point C which is in the open simplex determined by an {n — 1)-
face F of T. We now let G; denote the collection of all sets of the form gf C\ T 
for gf G G. I t is an easy matter to verify that the hypotheses of Theorem 3 
are satisfied, but that no element of G' is a subset of Int T. 

Proof of Theorem 2. As in Theorem 1, we suppose the contrary and let h 
denote an element of G such that h C N{g, e) and G is continuous at h. For 
each non-degenerate element k of G, let M(k) be the collection of all intervals 
in k having one endpoint at Pk, but which are contained in no larger such 
interval. I t is easy to verify that \JM(k) = k and that two different intervals 
of M(k) meet only in Pk. 

Let APh denote an element of M(h). There is a positive number 5 such 
that if g' is an element of G which is a subset of N(h, ô), then (1) gf C N(g, e), 
(2) H(g', h) < 4rH{A, Ph), and (3) d(Pg., Ph) < 4rH{A, Ph). Let U denote 
the union of all elements of G which are subsets of N(h, 5) and let T denote 
a closed solid geometric ^-simplex such that (1) the diameter of T<4rld(A,Ph), 
(2) T C U, (3) A £ Int T, and (4) APh intersects Bd T in a point C which 
is in the open simplex determined by an (n — l)-face F of T. We let G' 
denote the set of all intersections of the form T C\ XPhJ where XPk G M(k) 
and K G . The hypotheses of Theorem 3 are satisfied but each element of 
G' intersects Bd T. 
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