CONCERNING UPPER SEMI-CONTINUOUS DECOMPOSITIONS OF E^{n} WHOSE NON-DEGENERATE ELEMENTS ARE POLYHEDRAL ARCS OR STAR-LIKE CONTINUA

L. B. TREYBIG

1. Introduction. In (1) Armentrout raised the question "Is there a monotone decomposition of E^{3} into arcs?" ${ }^{1}$ The analogous question for E^{2} was answered negatively by Roberts in (8). Our aim in this paper is to give a partial answer to Armentrout's question by proving the following theorem.

Theorem 1. Suppose that G is an upper semi-continuous decomposition of Euclidean n-space $E^{n}(n \geqq 1)$ so that there is a positive integer m such that if g is a non-degenerate element of G, then g is a polygonal arc of the form $A_{1} A_{2} \ldots A_{m}$. Then, if g is a non-degenerate element of G and ϵ is a positive number, there is a degenerate element of G which lies within ϵ of g.

The next theorem is one whose proof is analogous to that of Theorem 1.
Theorem 2. We change the statement of Theorem 1 by requiring that each non-degenerate element of G be a compact continuum that is star-like relative to a unique point.

Using an indirect argument, we prove Theorems 1 and 2 by showing that in either case, an application of the following theorem yields a contradiction.

Theorem 3. Suppose that G^{\prime} is an upper semi-continuous decomposition of a closed geometric n-simplex T such that (1) each element of G^{\prime} is compact and (2) there is an open subset U of B, the boundary of T, such that every element of G^{\prime} which intersects U is a point or a straight line interval that intersects B in only one point. Then, some element of G^{\prime} is a subset of Int T.

In (3) Bing has shown that if G is an upper semi-continuous decomposition of E^{3} having only countably many non-degenerate elements, then E^{3} / G is homeomorphic to E^{3} if G satisfies one of the following conditions: (1) each element of G is point-like and the sum of the non-degenerate elements is a G_{δ}; (2) each non-degenerate element of G is star-like; (3) each non-degenerate element of G is a tame arc. In (4) Bing has given an example of an upper semi-continuous decomposition G of E^{3} into points and a Cantor set of straight

[^0]line intervals such that E^{3} / G is considered to be probably topologically different from E^{3}. In (6) McAuley has shown that if G is an upper semicontinuous decomposition of E^{3} into points and straight line intervals and the intervals of G point in only countably many directions, then E^{3} / G is topologically E^{3}. For earlier work and basic theorems on upper semi-continuous decompositions, see Moore (7) and Whyburn (9). For an excellent expository paper with a fairly complete bibliography, see Armentrout (1).
2. Definitions. The statement that G is an upper semi-continuous decomposition of the topological space X means that G is a decomposition of X such that if $g \in G$ and U is an open set in X containing g, then the union of the elements of G contained in U is open in X. We consider here only decompositions into compact sets. A monotone decomposition of a space is an upper semi-continuous decomposition into compact continua. The decomposition space X / G associated with a space X and an upper semi-continuous decomposition G of X is the space whose points are elements of G and whose open sets are those subsets H of G such that $\cup H$ is open in X. The natural mapping $P: X \rightarrow X / G$ is a closed, continuous mapping. The decomposition G will be said to be continuous at the element g of G provided it is true that if C is a finite proper cover of g by open sets in X, then there is an open set V containing g such that every element of G which intersects V is a subset of $\cup C$ and intersects every member of C. A continuum M in E^{n} is said to be point-like provided $E^{n}-M$ is homeomorphic to the complement of a point in E^{n}. A decomposition G of E^{n} is said to be point-like provided every member of G is a point-like continuum.

An arc M in E^{n} will be said to be polygonal provided M is the union of a finite number of straight line intervals. We denote such an M by the symbol $A_{1} A_{2} \ldots A_{m}$, where each $A_{i} A_{i+1}$ is a straight line interval and where no straight line contains $A_{i-1} A_{i}$ and $A_{i} A_{i+1}$ for any $i, 2 \leqq i \leqq m-1$. A compact continuum g is said to be star-like provided there is a point P of g such that if X is a point of $g-P$, then interval $X P$ is a subset of g. Here, let us say g is star-like relative to P. If g_{1} and g_{2} are two point sets in the metric space (X, d) the Hausdorff distance $H\left(g_{1}, g_{2}\right)$ from g_{1} to g_{2} is $\operatorname{lub}\left\{d\left(x, g_{i}\right) \mid\right.$ $i=1$ or $\left.2 ; x \in g_{1} \cup g_{2}\right\}$. The word compact is used in the "finite cover" sense.
3. Some lemmas. The first lemma is an immediate consequence of Theorem 1 of (8). An analogous theorem is also proved by Bing in Theorem 2 of (2).

Lemma 1. Suppose that G is an upper semi-continuous decomposition of the complete metric space (X, d) such that each element of G is compact. Then, the set K of all elements of G at which G is continuous is a dense G_{δ} in X / G.

We now prove a lemma in slightly more general form than is needed here,
but which should be useful in attacking the problem of showing that there is no monotone decomposition of E^{n} into polygonal arcs.

Lemma 2. Suppose that $A_{1} A_{2} \ldots A_{n}$ is a polygonal arc in E^{v} and ϵ is a positive number. Then, there is a positive number h such that if $B_{1}, B_{2}, \ldots, B_{m}$ is a polygonal arc whose Hausdorff distance from $A_{1} A_{2} \ldots A_{n}$ is less than h, then (1) $m \geqq n$, and (2) if $m=n$, then $d\left(A_{i}, B_{i}\right)<\epsilon, i=1, \ldots, n$, or $d\left(A_{i}, B_{n+1-i}\right)<\epsilon, i=1, \ldots, n$.

Proof. Let k denote a positive number less than each of $\epsilon, 4^{-1} d\left(A_{1}, A_{2}\right), \ldots$, $4^{-1} d\left(A_{n-1}, A_{n}\right)$. There exist points $X_{i}, \quad Y_{i}, i=1, \ldots, n-1$, such that $X_{i}, Y_{i} \in A_{i} A_{i+1}$ and $d\left(A_{i}, X_{i}\right)=d\left(Y_{i}, A_{i+1}\right)=k$. There is a positive number r such that (1) $r<k, r<\epsilon-k$, (2) $r<4^{-1} d\left(A_{i} A_{i+1}, A_{j} A_{j+1}\right)$, $1 \leqq i<i+1<j<n$, and (3) no straight line intersects

$$
\mathrm{Cl} N\left(A_{i} Y_{i}, r\right), \mathrm{Cl} N\left(A_{i+1}, r\right), \quad \text { and } \mathrm{Cl} N\left(X_{i+1} A_{i+2}, r\right), \quad i=1, \ldots, n-2 .
$$

(If $M \subset E^{N}$, then $N(M, r)=\{X \mid d(X, M)<r\}$.) Also, let $C=\left\{g_{1}, \ldots, g_{k}\right\}$ denote a simple chain of spherical open sets of the form $N(X, r)$ such that (1) each g_{i} is centred on a point of $A_{1} A_{2} \ldots A_{n}$ and intersects g_{j} if and only if $|i-j| \leqq 1$, and (2) each A_{i} is the centre of some $g_{j}, g_{1}=N\left(A_{1}, r\right)$ and $g_{k}=N\left(A_{n}, r\right)$. Note that C covers $A_{1} A_{2} \ldots A_{n}$. Let h denote a positive number such that $\mathrm{Cl} N\left(A_{1} A_{2} \ldots A_{n}, h\right) \subset \cup C$.

Now suppose that $B_{1} B_{2} \ldots B_{m}$ is a polygonal arc such that $H\left(B_{1} B_{2} \ldots B_{m}\right.$, $\left.A_{1} A_{2} \ldots A_{n}\right)<h$. Let $X_{1}{ }^{\prime}$ denote a point of $B_{1} B_{2} \ldots B_{m} \cap g_{1}$ and $Y_{n-1}{ }^{\prime}$ a point of $B_{1} B_{2} \ldots B_{m} \cap g_{k}$ and suppose, for example, that $X_{1}{ }^{\prime}$ precedes $Y_{n-1}{ }^{\prime}$ in the order from B_{1} to B_{m} on $B_{1} B_{2} \ldots B_{m}$.

Let $Y_{1}{ }^{\prime}$ denote the last point of subarc $X_{1}{ }^{\prime} Y_{n-1}{ }^{\prime}$ of $B_{1} B_{2} \ldots B_{m}$ on $\operatorname{Bd} N\left(A_{1} Y_{1}, r\right)$. Let $X_{2}{ }^{\prime}$ denote the first point of arc $Y_{1}{ }^{\prime} Y_{n-1}{ }^{\prime}$ which lies on $\operatorname{Bd} N\left(X_{2} A_{3}, r\right)$, and let $Y_{2}{ }^{\prime}$ denote the last point of $X_{2}{ }^{\prime} Y_{n-1}{ }^{\prime}$ on $\operatorname{Bd} N\left(A_{2} Y_{2}, r\right)$. Consider a continuation of this process to obtain $X_{3}{ }^{\prime}$, $Y_{3}{ }^{\prime}, \ldots, X_{n-1}{ }^{\prime}$. Now, if we let $B_{n i} B_{n i+1}$ denote an interval of $B_{1} B_{2} \ldots B_{m}$ containing $X_{i}{ }^{\prime}$, then we see that $n_{1} \leqq n_{2} \leqq \ldots \leqq n_{m-1}$. But also, if some $n_{i}=n_{i+1}$, then $B_{n i} B_{n i+1}$ intersects $\mathrm{Cl} N\left(A_{i} Y_{i}, r\right), \mathrm{Cl} N\left(A_{i+1}, r\right)$, and $\mathrm{Cl} N\left(X_{i+1} A_{i+2}, r\right)$, a contradiction. Hence $n_{1}<n_{2}<\ldots<n_{m-1}$; thus $m \geqq n$.

Now, suppose that $m=n$ and, as above, that $X_{1}{ }^{\prime}$ precedes $Y_{m-1}{ }^{\prime}$ in the order from B_{1} to B_{m} on $B_{1} B_{2} \ldots B_{m}$. Some $B_{j_{i}}$ lies between $Y_{i-1}{ }^{\prime}$ and $X_{i}{ }^{\prime}$ on $B_{1} B_{2} \ldots B_{m}$ for $i=2, \ldots, m-1$. Clearly, the open ball $N\left(A_{i}, k+r\right)$ contains the segment $Y_{i-1}{ }^{\prime} X_{i}{ }^{\prime}$ of $B_{1} B_{2} \ldots B_{m}, i=2, \ldots, m-1$, and has radius less than ϵ; which implies that $d\left(B_{j_{i}}, A_{i}\right)<\epsilon$. Now let $B_{p} B_{p+1}$ contain $Y_{1}{ }^{\prime}$, where p is as small as possible, and let $B_{q} B_{q+1}$ contain $X_{n-1}{ }^{\prime}$, where q is as large as possible. If $p \geqq 2$, we see that $j_{m-1} \geqq m=n$ and that $q+1>m$, a contradiction. Thus $p=1$, and analogously, $q=m-1$. Therefore, we see that $d\left(A_{i}, B_{i}\right)<k+r<\epsilon, 2 \leqq i \leqq m-1$. If B_{1} is not an element of g_{1}, then we find that there must be two points of $B_{1} B_{2}$ on
$\operatorname{Bd} g_{1}$, where only one of them can belong to $\operatorname{Int}(\cup C)$. Analogously, $B_{m} \in g_{k}$. This completes the proof of Lemma 2.

The next lemma is not really needed in this paper, but would be of use to anyone attacking the problem (stated above) of filling up E^{n} with polygonal arcs.

Lemma 3. Suppose that G is an upper semi-continuous decomposition of E^{n} such that each non-degenerate element of G is a polygonal arc and that G_{1} is a collection of non-degenerate elements of G which is open in X / G. Then, there is an open subset V of G_{1} and a positive integer N such that if $g=A_{1} A_{2} \ldots A_{m}$ is an element of V and G is continuous at g, then $m \leqq N$.

Proof. Suppose the contrary. Let $g_{1}=A_{11} A_{12} \ldots A_{1_{11}}$ denote an element of G_{1} at which G is continuous. By Lemma 2 there is a positive number $h_{1}<1$ such that (1) $\mathrm{Cl} N\left(g_{1}, h_{1}\right) \subset \cup G_{1}$ and (2) if g is an element of G_{1} lying in $N\left(g_{1}, h_{1}\right)$, then $g=B_{1} B_{2} \ldots B_{p}$, where $p \geqq n_{1}$. Let $g_{2}=A_{21} A_{22} \ldots A_{2 n_{2}}$ denote an element of G_{1} such that (1) G is continuous at $g_{2},(2) g_{2} \subset N\left(g_{1}, 2^{-1} h_{1}\right)$, and (3) $n_{2}>n_{1}$. There is a positive number h_{2} less than one half the distance from g_{1} to g_{2} such that $\mathrm{Cl} N\left(g_{2}, h_{2}\right) \subset N\left(g_{1}, 2^{-1} h_{1}\right)$ and such that if g is any element of G lying in $N\left(g_{2}, h_{2}\right)$, then $g=B_{1} B_{2} \ldots B_{n}$, where $n \geqq n_{2}$. Now, let $g_{3}=A_{31} A_{32} \ldots A_{3 n 3}$ denote an element of G_{1} such that (1) G is continuous at g_{3}, (2) $g_{3} \subset N\left(g_{2}, 2^{-1} h_{2}\right)$, and (3) $n_{3}>n_{2}$. Consider a continuation of this process to obtain $h_{3}, g_{4}, n_{4}, h_{4}, g_{5}, n_{5}, \ldots$ The continua g_{1}, g_{2}, \ldots converge to a subcontinuum of an element $g=B_{1} B_{2} \ldots B_{m}$ of G. Since $g \subset N\left(g_{p}, h_{p}\right)$ for each positive integer p, then $m \geqq p$ for $p=1,2, \ldots$. This is a contradiction.

Lemma 4. Suppose that G is an upper semi-continuous decomposition of E^{n} such that each non-degenerate element g of G is a compact continuum which is star-like relative to exactly one of its points, say P_{g}. Then, if G is continuous at the non-degenerate element g and ϵ is a positive number, there is a positive number δ such that if h is an element of G and $H(g, h)<\delta$, then $d\left(P_{h}, P_{g}\right)<\epsilon$.

Proof. Suppose the contrary. There is a sequence h_{1}, h_{2}, \ldots of elements of G such that (1) $H\left(g, h_{p}\right)<p^{-1}$ for $p=1,2, \ldots$, and (2) there is a point Q of g distinct from P_{g} such that $P_{h_{1}}, P_{h_{2}}, \ldots$ converges to Q. This means, however, that if X is a point of $g-Q$ and k is a positive number, there is an integer N such that if p is an integer larger than N, then (1) there is a point X_{p} of h_{p} such that $d\left(X_{p}, X\right)<k$, (2) $d\left(Q, P_{h_{p}}\right)<k$, and (3) interval $X_{p} P_{h_{p}} \subset h_{p}$. This implies that interval $X Q \subset g$, and hence that g is star-like relative to Q, a contradiction.

4. Proofs of the theorems.

Proof of Theorem 3. Suppose that every element of G^{\prime} intersects B. We give
the proof only for $n>1$. Suppose also that W is a convex open subset of U which is a subset of a face F of T and such that (1) the boundary of W relative to B is an ($n-2$)-sphere S of radius r, (2) $\bar{W} \subset U$, and (3) $A C$ is an interval in G^{\prime}, where C is the centre of S. (Note that if there is an open subset W of U such that every element of G^{\prime} which intersects W is degenerate, then the proof given here can be simplified considerably to cover that case.) Let $m=\operatorname{lub}\left\{d(P, Q) \mid P Q \in G^{\prime}\right.$ and $\left.Q \in \bar{W}\right\}$, and let b denote a positive number less than the length of $A C$.

We now define a mapping $f: T \rightarrow T$ as follows: If X belongs to an element g of G^{\prime} such that g intersects $B-W$ or if $X \in B$, then let $f(X)=X$. Define $F: W \rightarrow E^{1}$ such that if $Q \in W$, then $F(Q)=b+r^{-1}(m-b)(r-d(Q, S))$. If X belongs to an interval $P Q$ in G^{\prime}, where $Q \in W$, then (a) if $d(P, Q) \leqq F(Q)$, then let $f(X)=X$, and (b) if $d(P, Q)>F(Q)$, let R denote the point of $P Q$ such that $d(R, Q)=F(Q)$ and (i) let $f(X)=R$ for $X \in P R$, and (ii) let $f(X)=X$ for $X \in R Q$.

We observe that f maps no point onto A and that $f(X)=X$ for $X \in B$. We now proceed toward showing that f is continuous. Let X_{1}, X_{2}, \ldots denote a sequence of elements of T converging to a point X_{0} of T and suppose that $X_{i} \in g_{i} \in G^{\prime}, i=0,1,2, \ldots$.

Case 1. $f\left(X_{0}\right)=X_{0}$. Since $f(X) \neq X$, only for some elements of T belonging to intervals of G^{\prime} which intersect W, we may as well assume that each g_{i} $(i=1,2, \ldots)$ is of the form $P_{i} Q_{i}$, where $Q_{i} \in W$ and that $f\left(X_{i}\right) \neq X_{i}$. In fact, let us assume that there is a positive number ϵ such that $d\left(X_{i}, f\left(X_{i}\right)\right) \geqq \epsilon$, $i=1,2, \ldots$ We first show that g_{0} intersects W. For, if g_{0} intersects $B-W$, then some subsequence of Q_{1}, Q_{2}, \ldots converges to $Q \in g_{0} \cap(B-W)$. Thus, for some large n we have that $m-\epsilon / 2 \leqq F\left(Q_{n}\right)$, and since we also know that $d\left(X_{n}, R_{n}\right) \leqq d\left(P_{n}, Q_{n}\right)-d\left(R_{n}, Q_{n}\right)\left(R_{n}=f\left(X_{n}\right)\right)$ and

$$
d\left(P_{n}, Q_{n}\right)-d\left(R_{n}, Q_{n}\right)=d\left(P_{n}, Q_{n}\right)-F\left(Q_{n}\right),
$$

we then know that $d\left(X_{n}, R_{n}\right) \leqq d\left(P_{n}, Q_{n}\right)-(m-\epsilon / 2) \leqq \epsilon / 2$. This is a contradiction, so we know that g_{0} intersects W and is of the form $P_{0} Q_{0}$, where $Q_{0} \in W$.

Since G^{\prime} is upper semi-continuous, then Q_{1}, Q_{2}, \ldots must converge to Q_{0}, and since $d\left(X_{n}, Q_{n}\right)>\epsilon / 2+F\left(Q_{n}\right), n=1,2, \ldots$, then

$$
d\left(X_{0}, Q_{0}\right) \geqq \epsilon / 2+F\left(Q_{0}\right)
$$

which implies that $f\left(X_{0}\right) \neq X_{0}$, a contradiction. Since $d\left(X_{i}, f\left(X_{i}\right)\right) \rightarrow 0$ and $d\left(X_{i}, X_{0}\right) \rightarrow 0$, it follows easily that $f\left(X_{i}\right) \rightarrow X_{0}=f\left(X_{0}\right)$.

Case 2. $f\left(X_{0}\right) \neq X_{0}$. Since g_{0} must be of the form $P_{0} Q_{0}$ for $Q_{0} \in W$, then there is an integer N such that if n is an integer $>N$, then g_{n} does not intersect $B-W$. Otherwise, there would exist a sequence of points of $B-W$ which converges to a point of g_{0}, and g_{0} contains only Q_{0} in common with B.

So we may as well assume that each $g_{i}(i=1,2, \ldots)$ is of the form $P_{i} Q_{i}$. Furthermore, since $X_{i} \rightarrow X_{0}, Q_{i} \rightarrow Q_{0}$, and $d\left(X_{0}, Q_{0}\right)>F\left(Q_{0}\right)$, we may as well assume that $d\left(X_{n}, Q_{n}\right)>F\left(Q_{n}\right)$ for $n=1,2, \ldots$ As above, for $n=0,1, \ldots$, let R_{n} denote the point of $P_{n} Q_{n}$ such that $d\left(R_{n}, Q_{n}\right)=F\left(Q_{n}\right)$; $R_{n}=f\left(X_{n}\right)$.

Suppose that $R_{n_{1}}, R_{n_{2}}, \ldots$ is a subsequence of R_{1}, R_{2}, \ldots which converges to a point R^{\prime} of $P_{0} Q_{0}$. But $d\left(R^{\prime}, Q_{0}\right)=\lim _{p \rightarrow \infty} d\left(R_{n_{p}}, Q_{n_{p}}\right)=\lim _{p \rightarrow \infty} F\left(Q_{n_{p}}\right)$, and this limit is $F\left(Q_{0}\right)$, which implies that $R_{0}=R^{\prime}$. Therefore $f\left(X_{i}\right) \rightarrow f\left(X_{0}\right)$; this completes the proof of the continuity of f.

Let $g: T-A \rightarrow B$ be the radial projection from A and let $r=g f: T \rightarrow B$. Since g is also continuous, it follows that r is a retraction, which is impossible. We conclude then that some element of G^{\prime} is a subset of Int T.

Proof of Theorem 1. Suppose that every element of G which intersects $N(g, \epsilon)$ is non-degenerate. By Lemma 1, there is an element $h=A_{1} A_{2} \ldots A_{m}$ of G such that $h \subset N(g, \epsilon)$ and G is continuous at h.

There is a positive number δ such that (1) $\delta<4^{-1} d\left(A_{i}, A_{i+1}\right), i=1, \ldots$, $m-1$, and (2) $\delta<4^{-1} d\left(A_{1} W, A_{2} A_{3} \ldots A_{m}\right)$, where $W=\left(A_{1}+A_{2}\right) / 2$. There is a positive number $k<\delta$ such that if $B_{1} B_{2} \ldots B_{m}$ is an element of G which intersects $N\left(A_{1} A_{2} \ldots A_{m}, k\right)$, then

$$
H\left(A_{1} A_{2} \ldots A_{m}, B_{1} B_{2} \ldots B_{m}\right)<\delta \quad \text { and } \quad d\left(A_{i}, B_{i}\right)<\delta, \quad i=1, \ldots, m
$$

We let T denote a closed solid geometric n-simplex such that (1) the diameter of $T<k$, (2) $A_{1} \in \operatorname{Int} T$, and (3) $A_{1} A_{2}$ intersects B, the boundary of T, in a point C which is in the open simplex determined by an $(n-1)$ face F of T. We now let G^{\prime} denote the collection of all sets of the form $g^{\prime} \cap T$ for $g^{\prime} \in G$. It is an easy matter to verify that the hypotheses of Theorem 3 are satisfied, but that no element of G^{\prime} is a subset of Int T.

Proof of Theorem 2. As in Theorem 1, we suppose the contrary and let h denote an element of G such that $h \subset N(g, \epsilon)$ and G is continuous at h. For each non-degenerate element k of G, let $M(k)$ be the collection of all intervals in k having one endpoint at P_{k}, but which are contained in no larger such interval. It is easy to verify that $\cup M(k)=k$ and that two different intervals of $M(k)$ meet only in P_{k}.

Let $A P_{h}$ denote an element of $M(h)$. There is a positive number δ such that if g^{\prime} is an element of G which is a subset of $N(h, \delta)$, then (1) $g^{\prime} \subset N(g, \epsilon)$, (2) $H\left(g^{\prime}, h\right)<4^{-1} d\left(A, P_{h}\right)$, and (3) $d\left(P_{g^{\prime}}, P_{h}\right)<4^{-1} d\left(A, P_{h}\right)$. Let U denote the union of all elements of G which are subsets of $N(h, \delta)$ and let T denote a closed solid geometric n-simplex such that (1) the diameter of $T<4^{-1} d\left(A, P_{h}\right)$, (2) $T \subset U$, (3) $A \in \operatorname{Int} T$, and (4) $A P_{h}$ intersects $\mathrm{Bd} T$ in a point C which is in the open simplex determined by an $(n-1)$-face F of T. We let G^{\prime} denote the set of all intersections of the form $T \cap X P_{k}$, where $X P_{k} \in M(k)$ and $k \in G$. The hypotheses of Theorem 3 are satisfied but each element of G^{\prime} intersects $\mathrm{Bd} T$.

References

1. Steve Armentrout, Monotone decompositions of E^{3}, Annals of Math. Studies, No. 60, pp. 1-25 (Princeton Univ. Press, Princeton, N.J., 1966).
2. R. H. Bing, Partially continuous decompositions, Proc. Amer. Math. Soc. 6 (1955), 124-133.
3. - Upper semi-continuous decompositions of E^{3}, Ann. of Math. (2) 65 (1957), 363-374.
4. - Pointlike decompositions of E^{3}, Fund. Math. 50 (1962), 431-453.
5. Stephen L. Jones, The impossibility of filling E^{n} with arcs, Bull. Amer. Math. Soc. 14 (1968), 155-159.
6. L. F. McAuley, Some upper semi-continuous decompositions of E^{3} into E^{3}, Ann. of Math. (2) 73 (1961), 437-457.
7. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., Vol. 13 (Amer. Math. Soc., Providence, R.I., 1932).
8. J. H. Roberts, Collections filling a plane, Duke Math. J. 2 (1936), 10-19.
9. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., Vol. 32 (Amer. Math. Soc., Providence, R.I., 1949).

The Tulane University of Louisiana, New Orleans, Louisiana

[^0]: Received January 18, 1967. The work on this paper was partially supported by NSF Grant Number GP-6220.
 ${ }^{1}$ Stephen Jones (5) has recently solved the problem for E^{n}.

