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The Minimal Model Program

This chapter outlines the general theory of the minimal model program. We shall
study algebraic threefolds thoroughly in the subsequent chapters in alignment
with the program. The reader who is not familiar with the program may grasp
the basic notions at first and refer back later.

Blowing up a surface at a point is not an essential operation from the birational
point of view. Its exceptional curve is characterised numerically as a (−1)-curve.
As is the case in this observation, the intersection number is a basic linear tool
in birational geometry. The minimal model program, or the MMP for short,
outputs a representative of each birational class that is minimal with respect to
the numerical class of the canonical divisor.

The MMP grew out of the surface theory with allowing mild singularities.
For a given variety, it produces a minimal model or a Mori fibre space after
finitely many birational transformations, which are divisorial contractions and
flips. Now the program is formulated in the logarithmic framework where we
treat a pair consisting of a variety and a divisor.

The MMP functions subject to the existence and termination of flips. Hacon
and McKernan with Birkar and Cascini proved the existence of flips in an
arbitrary dimension. Considering a flip to be the relative canonical model, they
established the MMP with scaling in the birational setting. The termination of
threefold flips follows from the decrease in the number of divisors with small
log discrepancy. Shokurov reduced the termination in an arbitrary dimension
to certain conjectural properties of the minimal log discrepancy.

It is also important to analyse the representative output by the MMP. The
Sarkisov program decomposes a birational map of Mori fibre spaces into ele-
mentary ones. For a minimal model, we expect the abundance which claims the
freedom of the linear system of a multiple of the canonical divisor. It defines
a morphism to the projective variety associated with the canonical ring, which
we know is finitely generated.
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2 The Minimal Model Program

1.1 Preliminaries

We shall fix the notation and recall the fundamentals of algebraic geometry.
The book [178] by Hartshorne is a standard reference.

The natural numbers begin with zero. The symbol 𝑅≥𝑟 for 𝑅 = N, Z, Q or
R stands for the subset {𝑥 ∈ 𝑅 | 𝑥 ≥ 𝑟} and similarly 𝑅>𝑟 = {𝑥 ∈ 𝑅 | 𝑥 > 𝑟}.
For instance, N = Z≥0. The quotient Z𝑟 = Z/𝑟Z is the cyclic group of order 𝑟 .
The round-down b𝑟c of a real number 𝑟 is the greatest integer less than or equal
to 𝑟 , whilst the round-up d𝑟e is defined as d𝑟e = −b−𝑟c.

Schemes A scheme is always assumed to be separated. It is said to be integral
if it is irreducible and reduced.

We work over the field C of complex numbers unless otherwise mentioned.
An algebraic scheme is a scheme of finite type over Spec 𝑘 for the algebraically
closed ground field 𝑘 , which is tacitly assumed to be C. We call it a complex
scheme when we emphasise that it is defined over C. An algebraic scheme is
said to be complete if it is proper over Spec 𝑘 . A point in an algebraic scheme
usually means a closed point.

A variety is an integral algebraic scheme. A complex variety is a variety
over C. A curve is a variety of dimension one and a surface is a variety of
dimension two. An 𝑛-fold is a variety of dimension 𝑛. The affine space A𝑛
is Spec 𝑘 [𝑥1, . . . , 𝑥𝑛] and the projective space P𝑛 is Proj 𝑘 [𝑥0, . . . , 𝑥𝑛]. The
origin of A𝑛 is denoted by 𝑜.

The germ 𝑥 ∈ 𝑋 of a scheme is considered at a closed point unless otherwise
specified. It is an equivalence class of the pair (𝑋, 𝑥) of a scheme 𝑋 and a point
𝑥 in 𝑋 where (𝑋, 𝑥) is equivalent to (𝑋 ′, 𝑥 ′) if there exists an isomorphism
𝑈 ' 𝑈 ′ of open neighbourhoods 𝑥 ∈ 𝑈 ⊂ 𝑋 and 𝑥 ′ ∈ 𝑈 ′ ⊂ 𝑋 ′ sending 𝑥 to 𝑥 ′.
By a singularity, we mean the germ at a singular point as a rule.

For a locally free coherent sheaf E on an algebraic scheme 𝑋 , the projective
space bundle P(E ) = Proj𝑋 𝑆E over 𝑋 is defined by the symmetric O𝑋 -algebra
𝑆E =

⊕
𝑖∈N 𝑆

𝑖E of E . It is a P𝑛-bundle if E is of rank 𝑛 + 1. In particular, the
projective space P𝑉 = Proj 𝑆𝑉 is defined for a finite dimensional vector space
𝑉 . It is regarded as the quotient space (𝑉∨ \ 0)/𝑘× of the dual vector space 𝑉∨
minus zero by the action of the multiplicative group 𝑘× = 𝑘 \ {0} of the ground
field 𝑘 . As used above, the symbol ∨ stands for the dual and × for the group of
units.

Morphisms For a morphism 𝜋 : 𝑋 → 𝑌 of schemes, the image 𝜋(𝐴) of a
closed subset 𝐴 of 𝑋 and the inverse image 𝜋−1 (𝐵) of a closed subset 𝐵 of 𝑌
are considered set-theoretically. When 𝜋 is proper and 𝐴 is a closed subscheme,
we regard 𝜋(𝐴) as a reduced scheme. We also regard 𝜋−1 (𝐵) for a closed

https://doi.org/10.1017/9781108933988.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933988.002


1.1 Preliminaries 3

subscheme 𝐵 as a reduced scheme and distinguish it from the scheme-theoretic
fibre 𝑋 ×𝑌 𝐵.

A rational map 𝑓 : 𝑋 d 𝑌 of algebraic schemes is an equivalence class of
a morphism 𝑈 → 𝑌 defined on a dense open subset 𝑈 of 𝑋 . The image 𝑓 (𝑋)
of 𝑓 is the image 𝑝(Γ) of the graph Γ of 𝑓 as a closed subscheme of 𝑋 × 𝑌
by the projection 𝑝 : 𝑋 × 𝑌 → 𝑌 . We say that a morphism or a rational map
is birational if it has an inverse as a rational map. Two algebraic schemes are
birational if there exists a birational map between them. By definition, two
varieties are birational if and only if they have the same function field.

Let 𝜋 : 𝑋 → 𝑌 be a morphism of algebraic schemes. We say that 𝜋 is projec-
tive if it is isomorphic to Proj𝑌 R → 𝑌 by a graded O𝑌 -algebra R =

⊕
𝑖∈N R𝑖

generated by coherent R1, with R0 = O𝑌 . When 𝑌 is quasi-projective, the
projectivity of 𝜋 means that it is realised as a closed subscheme of a relative
projective space P𝑛 × 𝑌 → 𝑌 . An invertible sheaf L on 𝑋 is relatively very
ample (or very ample over 𝑌 or 𝜋-very ample) if it is isomorphic to O (1) by an
expression 𝑋 ' Proj𝑌 R as above. We say that L is relatively ample (𝜋-ample)
if L ⊗𝑎 is relatively very ample for some positive integer 𝑎.

Suppose that 𝜋 : 𝑋 → 𝑌 is proper. We say that 𝜋 has connected fibres if the
natural map O𝑌 → 𝜋∗O𝑋 is an isomorphism. This implies that the fibre 𝑋 ×𝑌 𝑦
at every 𝑦 ∈ 𝑌 is connected and non-empty [160, III corollaire 4.3.2]. The proof
for a projective morphism is in [178, III corollary 11.3]. In general, 𝜋 admits
the Stein factorisation 𝜋 = 𝑔 ◦ 𝑓 with 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑍 → 𝑌 defined by
𝑍 = Spec𝑌 𝜋∗O𝑋 , for which 𝑓 is proper with connected fibres and 𝑔 is finite. If
𝜋 is a proper birational morphism from a variety to a normal variety, then the
factor 𝑔 in the Stein factorisation is an isomorphism and hence 𝜋 has connected
fibres. This is referred to as Zariski’s main theorem.

Lemma 1.1.1 Let 𝜋 : 𝑋 → 𝑌 and 𝜑 : 𝑋 → 𝑍 be morphisms of algebraic
schemes such that 𝜋 is proper and has connected fibres. If every curve in 𝑋
contracted to a point by 𝜋 is also contracted by 𝜑, then 𝜑 factors through 𝜋 as
𝜑 = 𝑓 ◦ 𝜋 for a morphism 𝑓 : 𝑌 → 𝑍 .

Proof Let𝑌𝑚 and 𝑍𝑚 denote the sets of closed points in𝑌 and 𝑍 respectively.
For 𝑦 ∈ 𝑌𝑚, the inverse image 𝜋−1 (𝑦) is connected and 𝜑(𝜋−1 (𝑦)) is one point.
Define 𝑓 𝑚 : 𝑌𝑚 → 𝑍𝑚 by 𝑓 𝑚 (𝑦) = 𝜑(𝜋−1 (𝑦)). Since 𝜋 is proper and surjective,
for any closed subset 𝐵 of 𝑍 , 𝜋(𝜑−1 (𝐵)) is closed in 𝑌 and ( 𝑓 𝑚)−1 (𝐵 |𝑍𝑚 ) =
𝜋(𝜑−1 (𝐵)) |𝑌𝑚 . Thus 𝑓 𝑚 extends to a continuous map 𝑓 : 𝑌 → 𝑍 , which is a
morphism of schemes by the natural map O𝑍 → 𝜑∗O𝑋 = 𝑓∗𝜋∗O𝑋 = 𝑓∗O𝑌 . �

Chow’s lemma [160, II §5.6] replaces the proper morphism 𝜋 : 𝑋 → 𝑌

by a projective morphism. It asserts the existence of a projective birational
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4 The Minimal Model Program

morphism 𝜇 : 𝑋 ′ → 𝑋 such that 𝜋 ◦ 𝜇 : 𝑋 ′ → 𝑌 is projective. The projection
formula and the Leray spectral sequence, formulated for ringed spaces in [160,
0 §12.2], will be frequently used. The reference [198, section 3.6] explains
spectral sequences from our perspective.

Theorem 1.1.2 (Projection formula) Let 𝜋 : 𝑋 → 𝑌 be a morphism of ringed
spaces. Let F be an O𝑋 -module and let E be a finite locally free O𝑌 -module.
Then there exists a natural isomorphism 𝑅𝑖𝜋∗F ⊗ E ' 𝑅𝑖𝜋∗ (F ⊗ 𝜋∗E ).

Theorem 1.1.3 (Leray spectral sequence) Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍

be morphisms of ringed spaces. Let F be an O𝑋 -module. Then there exists a
spectral sequence

𝐸
𝑝,𝑞

2 = 𝑅𝑝𝑔∗𝑅
𝑞 𝑓∗F ⇒ 𝐸 𝑝+𝑞 = 𝑅𝑝+𝑞 (𝑔 ◦ 𝑓 )∗F .

In practice for a spectral sequence 𝐸 𝑝,𝑞2 ⇒ 𝐸 𝑝+𝑞 , we assume that 𝐸 𝑝,𝑞2 is
zero whenever 𝑝 or 𝑞 is negative. Then there exists an exact sequence

0→ 𝐸
1,0
2 → 𝐸1 → 𝐸

0,1
2 → 𝐸

2,0
2 → 𝐸2.

If further 𝐸 𝑝,𝑞2 = 0 for all 𝑝 ≥ 0 and 𝑞 ≥ 1, then 𝐸 𝑝,02 ' 𝐸 𝑝 . Likewise if
𝐸
𝑝,𝑞

2 = 0 for all 𝑝 ≥ 1 and 𝑞 ≥ 0, then 𝐸0,𝑞
2 ' 𝐸𝑞 .

Cohomologies We write 𝐻𝑖 (F ) for the cohomology 𝐻𝑖 (𝑋,F ) of a sheaf F

of abelian groups on a topological space 𝑋 when there is no confusion. If 𝑋 is
noetherian, then 𝐻𝑖 (F ) vanishes for all 𝑖 greater than the dimension of 𝑋 .

Let F be a coherent sheaf on an algebraic scheme 𝑋 . If 𝑋 is affine, then
𝐻𝑖 (F ) = 0 for all 𝑖 ≥ 1. If 𝜋 : 𝑋 → 𝑌 is a proper morphism, then the higher
direct image 𝑅𝑖𝜋∗F is coherent [160, III théorème 3.2.1]. In particular if 𝑋 is
complete, then 𝐻𝑖 (F ) is a finite dimensional vector space. The dimension of
𝐻𝑖 (F ) is denoted by ℎ𝑖 (F ). The alternating sum 𝜒(F ) = ∑

𝑖∈N (−1)𝑖ℎ𝑖 (F )
is called the Euler characteristic of F .

Let 𝑋 be a complete scheme of dimension 𝑛. For a coherent sheaf F and
an invertible sheaf L on 𝑋 , the asymptotic Riemann–Roch theorem defines the
intersection number (L 𝑛 ·F ) ∈ Z by the expression

𝜒(L ⊗𝑙 ⊗F ) = (L
𝑛 ·F )
𝑛!

𝑙𝑛 +𝑂 (𝑙𝑛−1),

where by Landau’s symbol𝑂, 𝑓 (𝑙) = 𝑂 (𝑔(𝑙)) means the existence of a constant
𝑐 such that | 𝑓 (𝑙) | ≤ 𝑐 |𝑔(𝑙) | for any large 𝑙. By this, Grothendieck’s dévissage
yields the estimate ℎ𝑖 (F ⊗L ⊗𝑙) = 𝑂 (𝑙𝑛) for all 𝑖 [266, section VI.2].

If 𝑋 is projective with a very ample sheaf O𝑋 (1), then the Euler character-
istic 𝜒(F ⊗ O𝑋 (𝑙)) is described as a polynomial in Q[𝑙], called the Hilbert
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1.1 Preliminaries 5

polynomial of F . The vanishing of 𝐻𝑖 (F ⊗ O𝑋 (𝑙)) below is known as Serre
vanishing.

Theorem 1.1.4 (Serre) Let F be a coherent sheaf on a projective scheme
𝑋 . Then for any sufficiently large integer 𝑙, the twisted sheaf F ⊗ O𝑋 (𝑙) is
generated by global sections and satisfies 𝐻𝑖 (F ⊗ O𝑋 (𝑙)) = 0 for all 𝑖 ≥ 1.

We have the cohomology and base change theorem for flat families of coher-
ent sheaves [160, III §§7.6–7.9], [361, section 5]. See also [178, section III.12].

Theorem 1.1.5 (Cohomology and base change) Let 𝜋 : 𝑋 → 𝑇 be a proper
morphism of algebraic schemes. Let F be a coherent sheaf on 𝑋 flat over 𝑇 .
Take the restriction F𝑡 of F to the fibre 𝑋𝑡 = 𝑋 ×𝑇 𝑡 at a closed point 𝑡 in 𝑇
and consider the natural map

𝛼𝑖𝑡 : 𝑅𝑖𝜋∗F ⊗ 𝑘 (𝑡) → 𝐻𝑖 (𝑋𝑡 ,F𝑡 ),

where 𝑘 (𝑡) is the skyscraper sheaf of the residue field at 𝑡.

(i) The dimension ℎ𝑖 (F𝑡 ) is upper semi-continuous on 𝑇 and the Euler char-
acteristic 𝜒(F𝑡 ) is locally constant on 𝑇 .

(ii) Fix 𝑖 and 𝑡 and suppose that 𝛼𝑖𝑡 is surjective. Then 𝛼𝑖
𝑡′ is an isomorphism

for all 𝑡 ′ in a neighbourhood at 𝑡. Further, 𝑅𝑖𝜋∗F is locally free at 𝑡 if
and only if 𝛼𝑖−1

𝑡 is surjective.
(iii) (Grauert) Suppose that 𝑇 is reduced. Fix 𝑖. If ℎ𝑖 (F𝑡 ) is locally constant,

then 𝑅𝑖𝜋∗F is locally free and 𝛼𝑖𝑡 is an isomorphism.

Divisors Let 𝑋 be an algebraic scheme. We write K𝑋 for the sheaf of total
quotient rings of O𝑋 . If 𝑋 is a variety, then it is the constant sheaf of the
function field 𝐾 (𝑋) of 𝑋 . A Cartier divisor 𝐷 on 𝑋 is a global section of the
quotient sheaf K ×

𝑋
/O×

𝑋
of multiplicative groups of units. It is associated with

an invertible subsheaf O𝑋 (𝐷) of K𝑋 . If 𝐷 is represented by local sections
𝑓𝑖 ∈ K ×

𝑈𝑖
with 𝑓𝑖 𝑓

−1
𝑗
∈ O×

𝑈𝑖∩𝑈 𝑗 , then O𝑋 (𝐷) |𝑈𝑖 = 𝑓 −1
𝑖

O𝑈𝑖 . We say that
𝐷 is principal if it is defined by a global section of K ×

𝑋
or equivalently

O𝑋 (𝐷) ' O𝑋 . The principal divisor given by 𝑓 ∈ Γ(𝑋,K ×
𝑋
) is denoted by

( 𝑓 )𝑋 . If 𝑓𝑖 belongs to O𝑈𝑖 ∩K ×
𝑈𝑖

for all 𝑖, then 𝐷 defines a closed subscheme
of 𝑋 and we say that 𝐷 is effective.

The Picard group Pic 𝑋 of 𝑋 is the group of isomorphism classes of invertible
sheaves on 𝑋 . It has an isomorphism

Pic 𝑋 ' 𝐻1 (O×𝑋 ).
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6 The Minimal Model Program

In fact this holds for any ringed space via Čech cohomology. The proof is found
in [440, section 5.4]. The isomorphism for a variety 𝑋 is derived at once from
the vanishing of 𝐻1 (K ×

𝑋
) for the flasque sheaf K ×

𝑋
.

By Serre’s criterion, an algebraic scheme 𝑋 is normal if and only if it satisfies
the conditions 𝑅1 and 𝑆2 defined as

(𝑅𝑖) for any 𝜂 ∈ 𝑋 , O𝑋,𝜂 is regular if O𝑋,𝜂 is of dimension at most 𝑖 and
(𝑆𝑖) for any 𝜂 ∈ 𝑋 , O𝑋,𝜂 is Cohen–Macaulay if O𝑋,𝜂 is of depth less than 𝑖,

in which we consider scheme-theoretic points 𝜂 ∈ 𝑋 . Let 𝑋 be a normal variety.
A closed subvariety of codimension one in 𝑋 is called a prime divisor. A Weil
divisor 𝐷 on 𝑋 , or simply called a divisor, is an element in the free abelian
group 𝑍1 (𝑋) generated by prime divisors on 𝑋 . A Cartier divisor on a normal
variety is a Weil divisor. Every Weil divisor on a smooth variety is Cartier. The
divisor 𝐷 is expressed as a finite sum 𝐷 =

∑
𝑖 𝑑𝑖𝐷𝑖 of prime divisors 𝐷𝑖 with

non-zero integers 𝑑𝑖 . The support of 𝐷 is the union of 𝐷𝑖 . The divisor 𝐷 is
effective if all 𝑑𝑖 are positive, and it is reduced if all 𝑑𝑖 equal one. We write
𝐷 ≤ 𝐷 ′ if 𝐷 ′ − 𝐷 is effective. The linear equivalence 𝐷 ∼ 𝐷 ′ of divisors
means that 𝐷 ′ − 𝐷 is principal.

The divisor 𝐷 is associated with a divisorial sheaf O𝑋 (𝐷) on 𝑋 . A divisorial
sheaf is a reflexive sheaf of rank one, where a coherent sheaf F is said to be
reflexive if the natural map F → F∨∨ to the double dual is an isomorphism.
The sheaf O𝑋 (𝐷) is the subsheaf of K𝑋 defined by

Γ(𝑈,O𝑋 (𝐷)) = { 𝑓 ∈ 𝐾 (𝑋) | ( 𝑓 )𝑈 + 𝐷 |𝑈 ≥ 0},

in which zero is contained in the set on the right by convention. The divisor
class group Cl 𝑋 is the quotient of the group 𝑍1 (𝑋) of Weil divisors divided by
the subgroup of principal divisors. It is regarded as the group of isomorphism
classes of divisorial sheaves on 𝑋 and has an injection Pic 𝑋 ↩→ Cl 𝑋 .

Linear systems Let 𝑋 be a normal complete variety. Let 𝐷 be a Weil divisor
on 𝑋 and let 𝑉 be a vector subspace of global sections in 𝐻0 (O𝑋 (𝐷)). The
projective space Λ = P𝑉∨ = (𝑉 \ 0)/𝑘× where 𝑘 is the ground field is called a
linear system on 𝑋 . It defines a rational map 𝑋 d P𝑉 . When𝑉 = 𝐻0 (O𝑋 (𝐷)),
we write |𝐷 | = P𝐻0 (O𝑋 (𝐷))∨ and call it a complete linear system. By the
inclusion O𝑋 (𝐷) ⊂ K𝑋 , the linear system |𝐷 | is regarded as the set of effective
divisors 𝐷 ′ linearly equivalent to 𝐷, and Λ is a subset of |𝐷 |. That is,

Λ ⊂ |𝐷 | = {𝐷 ′ ≥ 0 | 𝐷 ′ ∼ 𝐷}.

The base locus of Λ means the scheme-theoretic intersection 𝐵 =
⋂
𝐷′∈Λ 𝐷

′

in 𝑋 . We say that the linear system Λ is free if 𝐵 is empty. We say that Λ is
mobile if 𝐵 is of codimension at least two. The divisor 𝐷 is said to be free (resp.
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1.1 Preliminaries 7

mobile) if |𝐷 | is free (resp. mobile). By definition, a free Weil divisor is Cartier.
When ∅ ≠ Λ ⊂ |𝐷 |, Λ is decomposed as Λ = Λ′ + 𝐹 with a mobile linear
system Λ′ ⊂ |𝐷 − 𝐹 | and the maximal effective divisor 𝐹 such that 𝐹 ≤ 𝐷1
for all 𝐷1 ∈ Λ. The constituents Λ′ and 𝐹 are called the mobile part and the
fixed part of Λ respectively. The rational map defined by Λ′ is isomorphic to
𝑋 d P𝑉 . The linear system Λ is mobile if and only if 𝐹 is zero.

Even if 𝑋 is not complete, the linear system Λ = P𝑉∨ is defined for a finite
dimensional vector subspace𝑉 of𝐻0 (O𝑋 (𝐷)). We consider |𝐷 | to be the direct
limit lim−−→𝑉

Λ of linear systems.
A general point in a variety 𝑍 means a point in a dense open subset𝑈 of 𝑍 . A

very general point in 𝑍 means a point in the intersection
⋂
𝑖∈N𝑈𝑖 of countably

many dense open subsets𝑈𝑖 . Thus by the general member of the linear system
Λ, we mean a general point in Λ as a projective space. Bertini’s theorem asserts
that a free linear system on a smooth complex variety has a smooth member.
The statement for the hyperplane section holds even in positive characteristic.

Theorem 1.1.6 (Bertini’s theorem) Let Λ = P𝑉∨ be a free linear system on a
smooth variety 𝑋 and let 𝜑 : 𝑋 → P𝑉 be the induced morphism. Suppose that
𝜑 is a closed embedding or the ground field is of characteristic zero. Then the
general member 𝐻 of Λ is a smooth divisor on 𝑋 , and if the image 𝜑(𝑋) is of
dimension at least two, then 𝐻 is a smooth prime divisor.

The canonical divisor It is the canonical divisor that plays the most important
role in birational geometry. The sheaf of differentials on an algebraic scheme
𝑋 is denoted by Ω𝑋 . When 𝑋 is smooth, Ω𝑖

𝑋
denotes the 𝑖-th exterior power∧𝑖 Ω𝑋 .

Definition 1.1.7 The canonical divisor 𝐾𝑋 on a normal variety 𝑋 is the
divisor defined up to linear equivalence by the isomorphism O𝑋 (𝐾𝑋 ) |𝑈 ' Ω𝑛

𝑈

on the smooth locus𝑈 in 𝑋 , where 𝑛 is the dimension of 𝑋 .

Example 1.1.8 The projective space P𝑛 has the canonical divisor 𝐾P𝑛 ∼
−(𝑛 + 1)𝐻 for a hyperplane 𝐻. This follows from the Euler sequence

0→ ΩP𝑛 → OP𝑛 (−1)⊕(𝑛+1) → OP𝑛 → 0.

One can describe 𝐾P𝑛 in an explicit way. Take homogeneous coordinates
𝑥0, . . . , 𝑥𝑛 of P𝑛. Let 𝑈𝑖 ' A𝑛 denote the complement of the hyperplane 𝐻𝑖
defined by 𝑥𝑖 . The chart𝑈0 admits a nowhere vanishing 𝑛-form 𝑑𝑦1 ∧ · · · ∧ 𝑑𝑦𝑛
with coordinates 𝑦1, . . . , 𝑦𝑛 for 𝑦𝑖 = 𝑥𝑖𝑥

−1
0 . It is expressed on the chart

𝑈1 having coordinates 𝑧0, 𝑧2, . . . , 𝑧𝑛 for 𝑧𝑖 = 𝑥𝑖𝑥
−1
1 as the rational 𝑛-form

𝑑𝑧−1
0 ∧ 𝑑 (𝑧2𝑧

−1
0 ) ∧ · · · ∧ 𝑑 (𝑧𝑛𝑧

−1
0 ) = −𝑧

−(𝑛+1)
0 𝑑𝑧0 ∧ 𝑑𝑧2 ∧ · · · ∧ 𝑑𝑧𝑛, which has

pole of order 𝑛 + 1 along 𝐻0. Thus 𝐾P𝑛 ∼ −(𝑛 + 1)𝐻0.
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8 The Minimal Model Program

In spite of the ambiguity concerning linear equivalence, it is standard to treat
the canonical divisor as if it were a specified divisor.

For a closed subscheme 𝐷 of an algebraic scheme 𝑋 , there exists an exact
sequence I /I 2 → Ω𝑋 ⊗ O𝐷 → Ω𝐷 → 0, where I is the ideal sheaf in O𝑋
defining 𝐷. This induces the adjunction formula, which connects the canonical
divisor to that on a Cartier divisor.

Theorem 1.1.9 (Adjunction formula) Let 𝑋 be a normal variety and let 𝐷 be
a reduced Cartier divisor on 𝑋 which is normal. Then 𝐾𝐷 = (𝐾𝑋 + 𝐷) |𝐷 in
the sense that O𝐷 (𝐾𝐷) ' O𝑋 (𝐾𝑋 + 𝐷) ⊗ O𝐷 .

Duality Albeit Grothendieck’s duality theory works in the derived category for
proper morphisms [177], it is extremely hard to obtain the dualising complex
and a trace map in a compatible manner. The theory becomes efficient if
it is restricted to the Cohen–Macaulay projective case as explained in [178,
section III.7] and [277, section 5.5]. For example, the dualising complex on a
Cohen–Macaulay projective scheme 𝑋 of pure dimension 𝑛 is the shift 𝜔𝑋 [𝑛]
of the dualising sheaf 𝜔𝑋 .

Definition 1.1.10 Let 𝑋 be a complete scheme of dimension 𝑛 over an alge-
braically closed field 𝑘 . The dualising sheaf 𝜔𝑋 for 𝑋 is a coherent sheaf on
𝑋 endowed with a trace map 𝑡 : 𝐻𝑛 (𝜔𝑋 ) → 𝑘 such that for any coherent sheaf
F on 𝑋 , the natural pairing

Hom(F , 𝜔𝑋 ) × 𝐻𝑛 (F ) → 𝐻𝑛 (𝜔𝑋 )
𝑡−→ 𝑘

induces an isomorphism Hom(F , 𝜔𝑋 ) ' 𝐻𝑛 (F )∨.

The dualising sheaf is unique up to isomorphism if it exists. The projective
space P𝑛 has the dualising sheaf𝜔P𝑛 '

∧𝑛 ΩP𝑛 . This with Lemma 1.1.11 yields
the existence of 𝜔𝑋 for every projective scheme 𝑋 by taking a finite morphism
𝑋 → P𝑛 known as projective Noether normalisation. If 𝑋 is embedded into
a projective space 𝑃 with codimension 𝑟 , then 𝜔𝑋 ' Ext𝑟𝑃 (O𝑋 , 𝜔𝑃) [178, III
proposition 7.5]. If 𝑋 is a normal projective variety, then 𝜔𝑋 coincides with
the sheaf O𝑋 (𝐾𝑋 ) associated with the canonical divisor.

For a finite morphism 𝜋 : 𝑋 → 𝑌 of algebraic schemes, the push-forward 𝜋∗
defines an equivalence of categories from the category of coherent O𝑋 -modules
to that of coherent 𝜋∗O𝑋 -modules. This associates every coherent sheaf G on𝑌
functorially with a coherent sheaf 𝜋!G on 𝑋 satisfying 𝜋∗Hom𝑋 (F , 𝜋!G ) '
Hom𝑌 (𝜋∗F ,G ) for any coherent sheaf F on 𝑋 .
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1.1 Preliminaries 9

Lemma 1.1.11 Let 𝜋 : 𝑋 → 𝑌 be a finite morphism of complete schemes of
the same dimension. If the dualising sheaf 𝜔𝑌 for 𝑌 exists, then 𝜔𝑋 = 𝜋!𝜔𝑌 is
the dualising sheaf for 𝑋 .

Proof Let 𝑛 denote the common dimension of 𝑋 and 𝑌 . For a coherent sheaf
F on 𝑋 , Hom𝑋 (F , 𝜋!𝜔𝑌 ) = Hom𝑌 (𝜋∗F , 𝜔𝑌 ) is dual to𝐻𝑛 (F ) = 𝐻𝑛 (𝜋∗F )
by the property of 𝜔𝑌 , where the latter equality follows from the Leray spectral
sequence 𝐻 𝑝 (𝑅𝑞𝜋∗F ) ⇒ 𝐻 𝑝+𝑞 (F ). �

The duality for Cohen–Macaulay sheaves on a projective scheme is derived
from that on the projective space via projective Noether normalisation. See
[277, theorem 5.71].

Theorem 1.1.12 (Serre duality) Let 𝑋 be a projective scheme of dimension
𝑛. Let F be a Cohen–Macaulay coherent sheaf on 𝑋 with support of pure
dimension 𝑛. Then 𝐻𝑖 (Hom𝑋 (F , 𝜔𝑋 )) is dual to 𝐻𝑛−𝑖 (F ) for all 𝑖.

The adjunction formula 𝜔𝐷 ' 𝜔𝑋 ⊗ O𝑋 (𝐷) ⊗ O𝐷 holds for a Cohen–
Macaulay projective scheme 𝑋 of pure dimension and an effective Cartier
divisor 𝐷 on 𝑋 . Compare it with Theorem 1.1.9.

Resolution of singularities A projective birational morphism is described as a
blow-up. The blow-up of an algebraic scheme 𝑋 along a coherent ideal sheaf I

in O𝑋 , or along the closed subscheme defined by I , is the projective morphism
𝜋 : 𝐵 = Proj𝑋

⊕
𝑖∈N I 𝑖 → 𝑋 . The pull-back I O𝐵 = 𝜋−1I · O𝐵 in O𝐵 is an

invertible ideal sheaf. Notice that I O𝐵 is different from 𝜋∗I . The blow-up 𝜋
has the universal property that every morphism 𝜑 : 𝑌 → 𝑋 that makes I O𝑌
invertible factors through 𝜋 as 𝜑 = 𝜋 ◦ 𝑓 for a morphism 𝑓 : 𝑌 → 𝐵.

Let 𝑓 : 𝑋 d 𝑌 be a birational map of varieties. The exceptional locus of 𝑓
is the locus in 𝑋 where 𝑓 is not biregular. Let 𝑍 be a closed subvariety of 𝑋
not contained in the exceptional locus of 𝑓 . The strict transform 𝑓∗𝑍 in 𝑌 of
𝑍 is the closure of the image of 𝑍 d 𝑌 . When 𝑋 and 𝑌 are normal, the strict
transform 𝑓∗𝑃 in 𝑌 of an arbitrary prime divisor 𝑃 on 𝑋 is defined as a divisor
in such a manner that 𝑓∗𝑃 is zero if 𝑃 is in the exceptional locus of 𝑓 . By linear
extension, we define the strict transform 𝑓∗𝐷 in 𝑌 for any divisor 𝐷 on 𝑋 .

Resolution of singularities is a fundamental tool in complex birational geom-
etry. We say that a reduced divisor 𝐷 on a smooth variety 𝑋 is simple normal
crossing, or snc for short, if 𝐷 is defined at every point 𝑥 in 𝑋 by the product
𝑥1 · · · 𝑥𝑚 of a part of a regular system 𝑥1, . . . , 𝑥𝑛 of parameters in O𝑋,𝑥 .

Definition 1.1.13 A resolution of a variety 𝑋 is a projective birational mor-
phism 𝜇 : 𝑋 ′→ 𝑋 from a smooth variety. The resolution 𝜇 is said to be strong
if it is isomorphic on the smooth locus in 𝑋 .
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10 The Minimal Model Program

Definition 1.1.14 Let 𝑋 be a normal variety, let Δ be a divisor on 𝑋 and let I
be a coherent ideal sheaf in O𝑋 . A log resolution of (𝑋,Δ,I ) is a resolution
𝜇 : 𝑋 ′→ 𝑋 such that

• the exceptional locus 𝐸 of 𝜇 is a divisor on 𝑋 ′,
• the pull-back I O𝑋 ′ is invertible and hence defines a divisor 𝐷 and
• 𝐸 + 𝐷 + 𝜇−1

∗ 𝑆 has snc support for the support 𝑆 of Δ.

The log resolution 𝜇 is said to be strong if it is isomorphic on the maximal
locus 𝑈 in 𝑋 such that 𝑈 is smooth, I |𝑈 defines a divisor 𝐷𝑈 and 𝐷𝑈 + 𝑆 |𝑈
has snc support. A (strong) log resolution of 𝑋 means that of (𝑋, 0,O𝑋 ), and
those of (𝑋,Δ) and (𝑋,I ) are likewise defined.

The existence of these resolutions for complex varieties is due to Hironaka.
The items (i) and (ii) below are derived from the main theorems I and II in
[187] respectively.

Theorem 1.1.15 (Hironaka [187]) (i) A strong resolution exists for every
complex variety.

(ii) A strong log resolution exists for every pair (𝑋,I ) of a smooth complex
variety 𝑋 and a coherent ideal sheaf I in O𝑋 .

Hironaka’s construction includes the existence of a strong log resolution
𝑋 ′ → 𝑋 equipped with an effective exceptional divisor 𝐸 on 𝑋 ′ such that
O𝑋 ′ (−𝐸) is relatively ample.

Analytic spaces We shall occasionally consider a complex scheme to be an
analytic space in the Euclidean topology. Whilst an algebraic scheme is obtained
by gluing affine schemes in A𝑛, an analytic space is constructed by gluing
analytic models in a domain in C𝑛. A reference is [151]. The ring of convergent
complex power series is denoted by C{𝑥1, . . . , 𝑥𝑛}.

Let 𝐷 be a domain in the complex manifold C𝑛. Let O𝐷 denote the sheaf of
holomorphic functions on 𝐷. Let I be an ideal sheaf in O𝐷 generated by a
finite number of global sections. The locally C-ringed space (𝑉, (O𝐷/I ) |𝑉)
for the support𝑉 of the quotient sheaf O𝐷/I is called an analytic model, where
being C-ringed means having the structure sheaf of C-algebras. An analytic
space is a locally C-ringed Hausdorff space such that every point has an open
neighbourhood isomorphic to an analytic model.

Every complex scheme 𝑋 is associated with an analytic space 𝑋ℎ . This
defines a functor ℎ from the category of complex schemes to the category of
analytic spaces. There exists a natural morphism 𝑋ℎ → 𝑋 of locally C-ringed
spaces which maps 𝑋ℎ bijectively to the set of closed points in 𝑋 . It pulls back
a coherent sheaf F on 𝑋 to a coherent sheaf Fℎ on 𝑋ℎ . When 𝑋 is complete, it
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induces an equivalence of categories. This is known as the GAGA principle,
which takes the acronym from the title of Serre’s paper [414].

Theorem 1.1.16 (GAGA principle [163, exposé XII], [414]) Let 𝑋 be a
complete complex scheme and let 𝑋ℎ be the analytic space associated with 𝑋 .
Then the functor ℎ induces an equivalence of categories from the category of
coherent sheaves on 𝑋 to the category of coherent sheaves on 𝑋ℎ .

For an analytic space 𝑉 , the exponential function exp(2𝜋
√
−1𝑡) defines a

group homomorphism O𝑉 → O×
𝑉

. The induced exact sequence

0→ Z→ O𝑉 → O×𝑉 → 0

is called the exponential sequence.
In principle, one can deal with analytic spaces analogously to complex

schemes as in [29]. For an analytic space 𝑉 , the Oka–Cartan theorem as-
serts the coherence of every ideal sheaf in O𝑉 that defines an analytic subspace
of 𝑉 . For a proper map 𝜋 : 𝑉 → 𝑊 of analytic spaces, the higher direct image
𝑅𝑖𝜋∗F of a coherent sheaf F on 𝑉 is coherent on𝑊 . In particular, the image
𝜋(𝑉) is the support of the analytic subspace of 𝑊 defined by the kernel of the
map O𝑊 → 𝜋∗O𝑉 , which is referred to as the proper mapping theorem.

The canonical divisor on a normal analytic space may not be defined as a
finite sum of prime divisors. Some notions such as projectivity of resolution of
singularities only make sense on a small neighbourhood about a fixed compact
subset of an analytic space. These will pose no obstacles as we mainly work on
the germ at a point in the analytic category.

Notation 1.1.17 The symbol 𝔇𝑛 denotes a domain in the complex space C𝑛
which contains the origin 𝑜. For example, we write 𝑜 ∈ 𝔇𝑛 for a germ of a
complex manifold.

1.2 Numerical Geometry

The intersection number is a basic linear tool in birational geometry. We shall
define it in the relative setting of a proper morphism 𝑋 → 𝑆. This section works
over an algebraically closed field 𝑘 of any characteristic.

One encounters divisors with rational coefficients naturally. For example for
a finite surjective morphism 𝑋 → 𝑌 of smooth varieties tamely ramified along
a smooth prime divisor 𝐷 on 𝑌 , the ramification formula which will be proved
in Theorem 2.2.20 expresses 𝐾𝑋 as the pull-back of 𝐾𝑌 + (1 − 1/𝑚)𝐷 with
the ramification index 𝑚 along 𝐷. One also has divisors with real coefficients
taking limits. We begin with formulation of these notions.
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12 The Minimal Model Program

Let 𝑋 be a normal variety. Let 𝑍1 (𝑋) denote the group of Weil divisors on
𝑋 . A Q-divisor is an element in the rational vector space 𝑍1 (𝑋) ⊗ Q. In like
manner, an R-divisor is an element in 𝑍1 (𝑋) ⊗R. An R-divisor 𝐷 is expressed
as a finite sum 𝐷 =

∑
𝑖 𝑑𝑖𝐷𝑖 of prime divisors 𝐷𝑖 with real coefficients 𝑑𝑖 , and

𝐷 is a Q-divisor if 𝑑𝑖 are rational. It is effective if 𝑑𝑖 ≥ 0 for all 𝑖 and 𝐷 ≤ 𝐷 ′
means that 𝐷 ′−𝐷 is effective. The round-down b𝐷c and the round-up d𝐷e are
defined as b𝐷c = ∑

𝑖 b𝑑𝑖c𝐷𝑖 and d𝐷e = ∑
𝑖 d𝑑𝑖e𝐷𝑖 . We sometimes say that a

usual divisor is integral to distinguish it from a Q-divisor and an R-divisor.
Let 𝐶1 (𝑋) denote the subgroup of 𝑍1 (𝑋) generated by Cartier divisors on

𝑋 . A Q-Cartier Q-divisor is an element in the rational vector space𝐶1 (𝑋) ⊗Q.
In other words, a Q-divisor 𝐷 is Q-Cartier if and only if there exists a non-zero
integer 𝑟 such that 𝑟𝐷 is integral and Cartier. Likewise an R-Cartier R-divisor
is an element in 𝐶1 (𝑋) ⊗ R. An R-Cartier Q-divisor is always Q-Cartier but a
Q-Cartier integral divisor is not necessarily Cartier.

Example 1.2.1 Consider the prime divisor 𝐷 = (𝑥1 = 𝑥2 = 0) on the surface
𝑋 = (𝑥2

1 − 𝑥2𝑥3 = 0) ⊂ A3 with coordinates 𝑥1, 𝑥2, 𝑥3. Then 2𝐷 is the Cartier
divisor defined by 𝑥2 and the scheme-theoretic intersection 2𝐷 ∩ 𝑙 with the line
𝑙 = (𝑥1 = 𝑥2 = 𝑥3) in 𝑋 is of length one. It follows that 𝐷 is not Cartier.

Let 𝜋 : 𝑌 → 𝑋 be a morphism of normal varieties. The pull-back 𝜋∗𝐷 of an
R-Cartier R-divisor 𝐷 on 𝑋 is defined as an R-Cartier R-divisor on 𝑌 by the
natural map 𝜋∗ : 𝐶1 (𝑋) ⊗R→ 𝐶1 (𝑌 ) ⊗R. If 𝐷 is a Q-divisor, then so is 𝜋∗𝐷.

Definition 1.2.2 Let 𝑋 be a normal variety. We say that 𝑋 is Q-Gorenstein if
the canonical divisor𝐾𝑋 is Q-Cartier. We say that 𝑋 is Q-factorial if all divisors
on 𝑋 are Q-Cartier, that is, Cl 𝑋/Pic 𝑋 is torsion. It is said to be factorial if all
divisors are Cartier, that is, Pic 𝑋 = Cl 𝑋 .

The Q-factoriality is not an analytically local property.

Example 1.2.3 The algebraic germ 𝑜 ∈ 𝑋 = (𝑥1𝑥2 + 𝑥3𝑥4 = 0) ⊂ A4 is not
Q-factorial. The prime divisor 𝐷 = (𝑥1 = 𝑥4 = 0) on 𝑋 is not Q-Cartier and
the divisor class group Cl 𝑋 is Z[𝐷] ' Z. Indeed, the blow-up 𝐵 of 𝑋 at 𝑜
resolves the projection 𝑋 d P3 from 𝑜 as a morphism 𝐵 → P3 and it yields
a line bundle 𝐵 → 𝑆 over the surface 𝑆 = (𝑥1𝑥2 + 𝑥3𝑥4 = 0) ' P1 × P1 ⊂ P3.
By this structure, Pic 𝐵 is generated by the strict transforms 𝐷𝐵 and 𝐸𝐵 of 𝐷
and 𝐸 = (𝑥2 = 𝑥4 = 0). They satisfy the relation 𝐷𝐵 + 𝐸𝐵 + 𝐹 ∼ 0 for the
exceptional divisor 𝐹 of 𝐵→ 𝑋 . Thus Cl 𝑋 ' Pic(𝐵 \ 𝐹) = Z[𝐷𝐵 \ 𝐹].

On the other hand, the algebraic germ 𝑜 ∈ 𝑌 = (𝑥1𝑥2 + 𝑥3𝑥4 + 𝑓 = 0) ⊂ A4

is factorial for a general cubic form 𝑓 in 𝑥1, . . . , 𝑥4. To see this, we compactify
𝑌 to 𝑌 = (𝑥0 (𝑥1𝑥2 + 𝑥3𝑥4) + 𝑓 = 0) ⊂ P4. The blow-up 𝐵̄ of 𝑌 at 𝑜 resolves
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the projection from 𝑜 as 𝐵̄ → P3, and this is the blow-up of P3 along the
sextic curve (𝑥1𝑥2 + 𝑥3𝑥4 = 𝑓 = 0). By this structure, Pic 𝐵̄ is generated by the
exceptional divisor 𝐹̄ of 𝐵̄→ 𝑌 and the strict transform 𝐻̄𝐵 of 𝐻̄ = 𝑌 \𝑌 . Thus
Cl𝑌 ' Pic(𝐵̄ \ (𝐹̄ + 𝐻̄𝐵)) = 0.

The two germs 𝑜 ∈ 𝑋 and 𝑜 ∈ 𝑌 become isomorphic in the analytic category
as will be seen in Proposition 2.3.3. See Remark 3.1.11 for further discussion.

We shall fix the base scheme 𝑆 and work relatively on a proper morphism
𝜋 : 𝑋 → 𝑆 of algebraic schemes, which is frequently denoted by 𝑋/𝑆. Every
terminology is accompanied by the reference to the relative setting. The ref-
erence is omitted when we consider a complete scheme 𝑋 with the structure
morphism 𝑋 → 𝑆 = Spec 𝑘 .

A relative subvariety 𝑍 of 𝑋/𝑆 means a closed subvariety of 𝑋 such that
𝜋(𝑍) is a point in 𝑆. A relative𝑚-cycle on 𝑋/𝑆 is an element in the free abelian
group 𝑍𝑚 (𝑋/𝑆) generated by relative subvarieties of dimension 𝑚 in 𝑋/𝑆. For
invertible sheaves L1, . . . ,L𝑚 and a relative 𝑚-cycle 𝑍 on 𝑋 , the intersection
number (L1 · · ·L𝑚 · 𝑍) is defined by the multilinear map

(Pic 𝑋)⊕𝑚 × 𝑍𝑚 (𝑋/𝑆) → Z

such that (L 𝑚 · 𝑍) for a relative subvariety 𝑍 coincides with (L 𝑚 · O𝑍 ) in
the asymptotic Riemann–Roch theorem 𝜒(L ⊗𝑙 ⊗ O𝑍 ) = (L 𝑚 · O𝑍 )𝑙𝑚/𝑚! +
𝑂 (𝑙𝑚−1). The intersection number (𝐷1 · · ·𝐷𝑚 · 𝑍) with Cartier divisors 𝐷𝑖
on 𝑋 is defined as (O𝑋 (𝐷1) · · ·O𝑋 (𝐷𝑚) · 𝑍). If 𝐷𝑖 are effective and intersect
properly on a relative subvariety 𝑍 , then (𝐷1 · · ·𝐷𝑚 ·𝑍) equals the length of the
structure sheaf O𝐴 of the artinian scheme 𝐴 = 𝐷1∩· · ·∩𝐷𝑚∩𝑍 . The length of
O𝐴,𝑥 for 𝑥 ∈ 𝐴 is referred to as the local intersection number at 𝑥 and denoted
by (𝐷1 · · ·𝐷𝑚 · 𝑍)𝑥 . When 𝑋 is a complete variety of dimension 𝑛 with the
structure morphism 𝑋 → 𝑆 = Spec 𝑘 , we write (L1 · · ·L𝑛) = (L1 · · ·L𝑛 · 𝑋)
and 𝐷1 · · ·𝐷𝑛 = (𝐷1 · · ·𝐷𝑛)𝑋 = (𝐷1 · · ·𝐷𝑛 · 𝑋).

By the extension (Pic 𝑋 ⊗R) × (𝑍1 (𝑋/𝑆) ⊗R) → R, the relative numerical
equivalence≡𝑆 is defined in both the real vector spaces Pic 𝑋⊗R and 𝑍1 (𝑋/𝑆)⊗
R in such a way that it induces a perfect pairing

𝑁1 (𝑋/𝑆) × 𝑁1 (𝑋/𝑆) → R

of vector spaces on the quotients 𝑁1 (𝑋/𝑆) = (Pic 𝑋 ⊗ R)/≡𝑆 and 𝑁1 (𝑋/𝑆) =
(𝑍1 (𝑋/𝑆) ⊗ R)/≡𝑆 . When 𝑆 = Spec 𝑘 , we just write ≡, 𝑁1 (𝑋) and 𝑁1 (𝑋)
without reference to 𝑆 as remarked above.

Definition 1.2.4 The spaces 𝑁1 (𝑋/𝑆) and 𝑁1 (𝑋/𝑆) are finite dimensional
[254, IV§4, proposition 3]. The equal dimension of 𝑁1 (𝑋/𝑆) and 𝑁1 (𝑋/𝑆)
is called the relative Picard number of 𝑋/𝑆 and denoted by 𝜌(𝑋/𝑆). When
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14 The Minimal Model Program

𝑆 = Spec 𝑘 , this number is called the Picard number of the complete scheme
𝑋 and denoted by 𝜌(𝑋).

Let 𝜑 : 𝑌 → 𝑋 be a proper morphism. It induces the pull-back 𝜑∗ : Pic 𝑋 →
Pic𝑌 and the push-forward 𝜑∗ : 𝑍𝑚 (𝑌/𝑆) → 𝑍𝑚 (𝑋/𝑆) as group homomor-
phisms. The push-forward 𝜑∗𝑍 of a relative subvariety 𝑍 of 𝑌/𝑆 is 𝑑𝜑(𝑍) if
the morphism 𝑍 → 𝜑(𝑍) is generically finite of degree 𝑑, and 𝜑∗𝑍 is zero if
𝜑(𝑍) is of dimension less than that of 𝑍 . These satisfy the projection formula

(𝜑∗L1 · · · 𝜑∗L𝑚 · 𝑍) = (L1 · · ·L𝑚 · 𝜑∗𝑍)

for invertible sheaves L𝑖 on 𝑋 and a relative 𝑚-cycle 𝑍 on 𝑌 . They yield
𝜑∗ : 𝑁1 (𝑋/𝑆) → 𝑁1 (𝑌/𝑆) and dually 𝜑∗ : 𝑁1 (𝑌/𝑆) → 𝑁1 (𝑋/𝑆). One also
has the natural surjection 𝑁1 (𝑌/𝑆) � 𝑁1 (𝑌/𝑋) and injection 𝑁1 (𝑌/𝑋) ↩→
𝑁1 (𝑌/𝑆). If 𝜑 is surjective, then 𝜑∗ : 𝑁1 (𝑋/𝑆) → 𝑁1 (𝑌/𝑆) is injective and
𝜑∗ : 𝑁1 (𝑌/𝑆) → 𝑁1 (𝑋/𝑆) is surjective.

Henceforth we fix a proper morphism 𝜋 : 𝑋 → 𝑆 from a normal variety to
a variety and make basic definitions for an R-Cartier R-divisor 𝐷 on 𝑋 . We
say that integral divisors 𝐷 and 𝐷 ′ on 𝑋 are relatively linearly equivalent and
write 𝐷 ∼𝑆 𝐷 ′ if the difference 𝐷 − 𝐷 ′ is linearly equivalent to the pull-back
𝜋∗𝐵 of some Cartier divisor 𝐵 on 𝑆. Namely, 𝐷 − 𝐷 ′ is zero in the quotient
Cl 𝑋/𝜋∗ Pic 𝑆. For R-divisors 𝐷 and 𝐷 ′ on 𝑋 , the relative R-linear equivalence
𝐷 ∼R,𝑆 𝐷

′ means that 𝐷 − 𝐷 ′ is zero in (Cl 𝑋/𝜋∗ Pic 𝑆) ⊗ R. When 𝐷 and
𝐷 ′ are Q-divisors, this is referred to as the relative Q-linear equivalence and
denoted by 𝐷 ∼Q,𝑆 𝐷

′. The space Pic 𝑋 ⊗ R is regarded as that of R-linear
equivalence classes of R-Cartier R-divisors on 𝑋 . The intersection number
(𝐷 · 𝐶) is defined for a pair of an R-Cartier R-divisor 𝐷 on 𝑋 and a relative
one-cycle 𝐶 on 𝑋/𝑆. This makes the notion of relative numerical equivalence
𝐷 ≡𝑆 𝐷 ′ for R-Cartier R-divisors 𝐷 and 𝐷 ′ on 𝑋 .

Definition 1.2.5 An R-Cartier R-divisor 𝐷 on 𝑋/𝑆 is said to be relatively nef
(or nef over 𝑆 or 𝜋-nef ) if (𝐷 · 𝐶) ≥ 0 for any relative curve 𝐶 in 𝑋/𝑆. When
𝑆 = Spec 𝑘 , we just say that 𝐷 is nef as usual.

A Cartier divisor 𝐷 on 𝑋 is said to be relatively ample (𝜋-ample) if O𝑋 (𝐷) is
a relatively ample invertible sheaf. It is said to be relatively very ample (𝜋-very
ample) if O𝑋 (𝐷) is a relatively very ample invertible sheaf. In spite of the
geometric definition, the ampleness is characterised numerically.

Theorem 1.2.6 (Nakai’s criterion) Let 𝜋 : 𝑋 → 𝑆 be a proper morphism of
algebraic schemes. An invertible sheaf L on 𝑋 is relatively ample if and only
if (L dim 𝑍 · 𝑍) > 0 for any relative subvariety 𝑍 of 𝑋/𝑆.
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1.2 Numerical Geometry 15

Kleiman’s ampleness criterion rephrases Nakai’s criterion in terms of the
cones of divisors and curves. A convex cone 𝐶, or simply called a cone, in a
finite dimensional real vector space 𝑉 is a subset of 𝑉 such that if 𝑣, 𝑤 ∈ 𝐶 and
𝑐 ∈ R>0, then 𝑣 + 𝑤 ∈ 𝐶 and 𝑐𝑣 ∈ 𝐶.

Definition 1.2.7 The ample cone 𝐴(𝑋/𝑆) is the convex cone in 𝑁1 (𝑋/𝑆)
spanned by the classes of relatively ample Cartier divisors on 𝑋 . The closed
cone NE(𝑋/𝑆) of curves is the closure of the convex cone in 𝑁1 (𝑋/𝑆) spanned
by the classes of relative curves in 𝑋/𝑆.

Notice that 𝐴(𝑋/𝑆) is an open cone since for a relatively ample divisor 𝐴
and a Cartier divisor 𝐷, the sum 𝐷 + 𝑙 𝐴 is relatively ample for large 𝑙.

Theorem 1.2.8 (Kleiman’s ampleness criterion [254]) Let 𝜋 : 𝑋 → 𝑆 be
a proper morphism of algebraic schemes. Then a Cartier divisor 𝐷 on 𝑋

is relatively ample if and only if the class of 𝐷 belongs to the ample cone
𝐴(𝑋/𝑆). If 𝜋 is projective, then 𝐴(𝑋/𝑆) and NE(𝑋/𝑆) are dual with respect
to the intersection pairing 𝑁1 (𝑋/𝑆) × 𝑁1 (𝑋/𝑆) → R in the sense that

𝐴(𝑋/𝑆) = {𝑦 ∈ 𝑁1 (𝑋/𝑆) | (𝑦, 𝑧) > 0 for all 𝑧 ∈ NE(𝑋/𝑆) \ 0},
NE(𝑋/𝑆) \ 0 = {𝑧 ∈ 𝑁1 (𝑋/𝑆) | (𝑦, 𝑧) > 0 for all 𝑦 ∈ 𝐴(𝑋/𝑆)}.

The theorem shows that if 𝜋 is projective, then the closure of the ample
cone 𝐴(𝑋/𝑆) coincides with the nef cone Nef (𝑋/𝑆) in 𝑁1 (𝑋/𝑆) spanned by
relatively nef R-Cartier R-divisors. The duality of 𝐴(𝑋/𝑆) and NE(𝑋/𝑆) still
holds for a Q-factorial complete variety 𝑋/𝑆 = Spec 𝑘 as studied in [254], but
it fails for a proper morphism in general.

Example 1.2.9 Fujino [128] constructed an example of a non-projective
complete toric threefold 𝑋 with 𝜌(𝑋) = 1 such that NE(𝑋) is a half-line
R≥0. The book [140] by Fulton is a standard introduction to toric varieties.
Let 𝑣1 = (1, 0, 1), 𝑣2 = (0, 1, 1), 𝑣3 = (−1,−1, 1) and 𝑤1 = (1, 0,−1), 𝑤2 =

(0, 1,−1), 𝑤3 = (−1,−1,−1) in 𝑁 = Z3. Take the fan Δ which consists of faces
of the cones 〈𝑣1, 𝑣2, 𝑣3〉, 〈𝑤1, 𝑤2, 𝑤3〉, 〈𝑣1, 𝑣2, 𝑤1〉, 〈𝑣2, 𝑤1, 𝑤2〉, 〈𝑣2, 𝑣3, 𝑤2, 𝑤3〉,
〈𝑣3, 𝑣1, 𝑤3, 𝑤1〉. The toric variety 𝑋 associated with (𝑁,Δ) is the example.

The numerical nature extends the notion of ampleness to R-divisors.

Definition 1.2.10 An R-Cartier R-divisor 𝐷 on 𝑋/𝑆 is said to be relatively
ample (𝜋-ample) if the class of 𝐷 belongs to the ample cone 𝐴(𝑋/𝑆). In other
words, 𝐷 is expressed as a finite sum 𝐷 =

∑
𝑖 𝑎𝑖𝐴𝑖 of relatively ample Cartier

divisors 𝐴𝑖 with 𝑎𝑖 ∈ R>0.
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16 The Minimal Model Program

We keep 𝜋 : 𝑋 → 𝑆 being a proper morphism from a normal variety to a
variety. For a Cartier divisor 𝐷 on 𝑋 , the natural map 𝜋∗𝜋∗O𝑋 (𝐷) → O𝑋 (𝐷)
defines a rational map

𝑋 d Proj𝑆 𝑆𝜋∗O𝑋 (𝐷)

over 𝑆 for the symmetric O𝑆-algebra 𝑆𝜋∗O𝑋 (𝐷) of 𝜋∗O𝑋 (𝐷). The relative
base locus of 𝐷 is the closed subscheme 𝐵 of 𝑋 given by the ideal sheaf I𝐵 in
O𝑋 such that the above map induces the surjection 𝜋∗𝜋∗O𝑋 (𝐷) � I𝐵O𝑋 (𝐷).
We say that 𝐷 is relatively free (𝜋-free) if 𝐵 is empty. We say that 𝐷 is relatively
mobile (𝜋-mobile) if 𝐵 is of codimension at least two. The definitions coincide
with those on a normal complete variety. Unless 𝐵 = 𝑋 , there exists a maximal
effective divisor 𝐹 such that I𝐵 ⊂ O𝑋 (−𝐹). The divisors 𝐷 − 𝐹 and 𝐹 are
called the relative mobile part (𝜋-mobile part) and the relative fixed part (𝜋-
fixed part) of 𝐷 respectively.

Definition 1.2.11 A Cartier divisor 𝐷 on 𝑋/𝑆 is said to be relatively semi-
ample (𝜋-semi-ample) if 𝑎𝐷 is relatively free for some positive integer 𝑎. An
R-Cartier R-divisor 𝐷 on 𝑋 is said to be relatively semi-ample (𝜋-semi-ample)
if it is expressed as a finite sum 𝐷 =

∑
𝑖 𝑎𝑖𝐴𝑖 of relatively semi-ample Cartier

divisors 𝐴𝑖 with 𝑎𝑖 ∈ R≥0. The definition is consistent by the next lemma.

Lemma 1.2.12 Let 𝜋 : 𝑋 → 𝑆 be a proper morphism from a normal variety to
a variety. Let 𝐷 and 𝐴1, . . . , 𝐴𝑛 be Cartier divisors on 𝑋 such that 𝐷 =

∑
𝑖 𝑎𝑖𝐴𝑖

with 𝑎𝑖 ∈ R≥0. If all 𝐴𝑖 are relatively free, then 𝑎𝐷 is relatively free for some
positive integer 𝑎.

Proof Let 𝑍1 (𝑋)Q denote the rational vector space of Q-divisors on 𝑋 . Let
𝑉 be the vector subspace of 𝑍1 (𝑋)Q spanned by 𝐴1, . . . , 𝐴𝑛. Then 𝐷 belongs
to (𝑉 ⊗Q R) ∩ 𝑍1 (𝑋)Q = 𝑉 and hence we may assume that 𝑎𝑖 ∈ Q and further
𝑎𝑖 ∈ Z by multiplying 𝐷. The assertion in this case follows from the existence
of the natural map

⊕
𝑖 (𝜋∗𝜋∗O𝑋 (𝐴𝑖))⊕𝑎𝑖 → 𝜋∗𝜋∗O𝑋 (𝐷). �

We provide an alternative characterisation of semi-ampleness.

Lemma 1.2.13 Let 𝜋 : 𝑋 → 𝑆 be a proper morphism from a normal variety
to a variety. An R-divisor 𝐷 on 𝑋 is relatively semi-ample if and only if there
exists a projective morphism 𝜋𝑌 : 𝑌 → 𝑆 from a normal variety through which
𝜋 factors as 𝜋 = 𝜋𝑌 ◦ 𝜑 for 𝜑 : 𝑋 → 𝑌 such that 𝐷 ∼R 𝜑∗𝐴 by a relatively
ample R-divisor 𝐴 on 𝑌/𝑆.

Proof The if part is obvious. We shall prove the only-if part for a relatively
semi-ample R-divisor 𝐷. Write 𝐷 as a finite sum 𝐷 =

∑
𝑖 𝑎𝑖𝐵𝑖 of relatively free
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1.2 Numerical Geometry 17

divisors 𝐵𝑖 with 𝑎𝑖 ∈ R>0. The morphism 𝜑𝑖 : 𝑋 → 𝑌𝑖 = Proj𝑆 𝑆𝜋∗O𝑋 (𝐵𝑖)
provides a relation 𝐵𝑖 ∼ 𝜑∗𝑖 𝐴𝑖 by a relatively ample divisor 𝐴𝑖 on 𝑌𝑖/𝑆.

Let 𝜑 : 𝑋 → 𝑌 be the Stein factorisation of 𝑋 → Proj𝑆 𝑆𝜋∗O𝑋 (
∑
𝑖 𝐵𝑖). A

relative curve𝐶 in 𝑋/𝑆 is contracted to a point by 𝜑 if and only if (∑𝑖 𝐵𝑖 ·𝐶) = 0.
This is equivalent to (𝐵𝑖 · 𝐶) = 0 for all 𝑖 since 𝐵𝑖 are relatively nef. By
Lemma 1.1.1, every 𝜑𝑖 factors through 𝜑 as 𝜑𝑖 = 𝜓𝑖◦𝜑 for𝜓𝑖 : 𝑌 → 𝑌𝑖 and𝐷 ∼R
𝜑∗

∑
𝑖 𝑎𝑖𝜓

∗
𝑖
𝐴𝑖 . Then𝐶 is contracted by 𝜑 if and only if (𝜑∗ (∑𝑖 𝑎𝑖𝜓

∗
𝑖
𝐴𝑖) ·𝐶) = 0.

This shows the relative ampleness of
∑
𝑖 𝑎𝑖𝜓

∗
𝑖
𝐴𝑖 on 𝑌/𝑆. �

Definition 1.2.14 A Cartier divisor 𝐷 on 𝑋/𝑆 is said to be relatively big
(𝜋-big) if there exists a positive integer 𝑎 such that the rational map 𝑋 d

Proj𝑆 𝑆𝜋∗O𝑋 (𝑎𝐷) is birational to the image.

Assuming that 𝜋 is projective, Kodaira’s lemma characterises the bigness
numerically.

Theorem 1.2.15 (Kodaira’s lemma) Let 𝜋 : 𝑋 → 𝑆 be a projective morphism
from a normal variety to a quasi-projective variety. A Cartier divisor 𝐷 on 𝑋
is relatively big if and only if there exist a relatively ample Q-divisor 𝐴 and an
effective Q-divisor 𝐵 such that 𝐷 = 𝐴 + 𝐵.

Proof The if part is obvious. We shall prove the only-if part for a relatively
big divisor 𝐷. By Stein factorisation, we may assume that 𝜋 has connected
fibres. Multiplying 𝐷, we may assume that 𝑋 d Proj𝑆 𝑆𝜋∗O𝑋 (𝐷) is birational
to the image 𝑌 . We write 𝜋𝑌 : 𝑌 → 𝑆. Take an open subset 𝑈 of 𝑋 such that
𝜑 : 𝑈 → 𝑌 is a morphism and such that the complement 𝑋 \𝑈 is of codimension
at least two. Then O𝑋 (𝐷) |𝑈 ' 𝜑∗O𝑌 (1) and

𝜋𝑌 ∗O𝑌 (𝑙) ⊂ 𝜋𝑌 ∗𝜑∗𝜑∗O𝑌 (𝑙) ' 𝜋∗ (O𝑋 (𝑙𝐷) |𝑈 ) = 𝜋∗O𝑋 (𝑙𝐷)

for any 𝑙 ∈ Z. Hence there exists a positive rational constant 𝑐 such that the
rank of the O𝑆-module 𝜋∗O𝑋 (𝑙𝐷) is greater than 𝑐𝑙𝑛 for sufficiently large 𝑙,
where 𝑛 = dim 𝑋 − dim 𝑆 is the dimension of the general fibre of 𝜋𝑌 .

Take a general very ample effective divisor 𝐻 on 𝑋 . Since the rank of
𝜋∗O𝐻 (𝑙𝐷 |𝐻 ) is estimated as 𝑂 (𝑙𝑛−1), the exact sequence

0→ 𝜋∗O𝑋 (𝑙𝐷 − 𝐻) → 𝜋∗O𝑋 (𝑙𝐷) → 𝜋∗O𝐻 (𝑙𝐷 |𝐻 )

yields the non-vanishing 𝜋∗O𝑋 (𝑙𝐷 − 𝐻) ≠ 0 for large 𝑙. Hence 𝐻0 (O𝑋 (𝑙𝐷 −
𝐻 + 𝜋∗𝐺)) = 𝐻0 (𝜋∗O𝑋 (𝑙𝐷 − 𝐻) ⊗ O𝑆 (𝐺)) ≠ 0 by a sufficiently very ample
divisor 𝐺 on 𝑆. Thus one can write 𝑙𝐷 − 𝐻 + 𝜋∗𝐺 = 𝐵1 + ( 𝑓 )𝑋 with an
effective divisor 𝐵1 and a principal divisor ( 𝑓 )𝑋 on 𝑋 . Then 𝐷 = 𝐴 + 𝐵 with
𝐴 = 𝑙−1 (𝐻 − 𝜋∗𝐺 + ( 𝑓 )𝑋 ) and 𝐵 = 𝑙−1𝐵1. �
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18 The Minimal Model Program

Remark 1.2.16 Without the quasi-projectivity of the base variety, Kodaira’s
lemma gives the decomposition 𝐷 = 𝐴 + 𝐵 into a relatively ample Q-divisor
𝐴 and a Q-divisor 𝐵 such that 𝜋∗O𝑋 (𝑙𝐵) ≠ 0 for some positive integer 𝑙.
In some literature, a Cartier divisor 𝐷 on 𝑋/𝑆 with 𝜋∗O𝑋 (𝐷) ≠ 0 is said
to be relatively effective. Provided that 𝑆 is quasi-projective, this means that
𝐷 is relatively linearly equivalent to an effective divisor. We do not use this
terminology for the reason that a relatively effective divisor over 𝑆 = Spec C is
not necessarily effective but effective up to linear equivalence.

By definition, a Cartier divisor 𝐷 on 𝑋 is relatively big if and only if so is the
restriction 𝐷 |𝜋−1 (𝑈 ) over some open subset𝑈 of 𝑆 containing the generic point
of 𝜋(𝑋). Thus Kodaira’s lemma with Kleiman’s criterion implies that bigness
on a projective morphism is a numerical condition. This provides grounds for
considering the cone of big divisors.

Definition 1.2.17 Assume that 𝜋 : 𝑋 → 𝑆 is projective. The big cone 𝐵(𝑋/𝑆)
is the convex cone in 𝑁1 (𝑋/𝑆) spanned by the classes of relatively big Cartier
divisors on 𝑋 . This is an open cone containing the ample cone 𝐴(𝑋/𝑆). An
R-Cartier R-divisor 𝐷 on 𝑋 is said to be relatively big (𝜋-big) if the class of
𝐷 belongs to the big cone 𝐵(𝑋/𝑆). Namely, 𝐷 is expressed as a finite sum
𝐷 =

∑
𝑖 𝑏𝑖𝐵𝑖 of relatively big Cartier divisors 𝐵𝑖 with 𝑏𝑖 ∈ R>0.

One can formulate Kodaira’s lemma for R-divisors.

Corollary 1.2.18 Let 𝜋 : 𝑋 → 𝑆 be a projective morphism from a normal
variety to a quasi-projective variety. An R-Cartier R-divisor𝐷 on 𝑋 is relatively
big if and only if there exist a relatively ample Q-divisor 𝐴 and an effective
R-divisor 𝐵 such that 𝐷 = 𝐴 + 𝐵.

Finally we introduce the notion of numerical limit of effective R-divisors.

Definition 1.2.19 The pseudo-effective cone 𝑃(𝑋/𝑆) is the closure of the
convex cone in 𝑁1 (𝑋/𝑆) spanned by the classes of Cartier divisors 𝐷 on 𝑋
with 𝜋∗O𝑋 (𝐷) ≠ 0. An R-Cartier R-divisor 𝐷 on 𝑋 is said to be relatively
pseudo-effective (𝜋-pseudo-effective) if the class of 𝐷 belongs to the pseudo-
effective cone 𝑃(𝑋/𝑆).

By Kodaira’s lemma, if 𝜋 is projective, then the pseudo-effective cone
𝑃(𝑋/𝑆) coincides with the closure of the big cone 𝐵(𝑋/𝑆). If 𝑆 is quasi-
projective, then a relatively pseudo-effective R-divisor on 𝑋 is realised in the
space 𝑁1 (𝑋/𝑆) as a limit of a sequence of effective R-divisors.

Example 1.2.20 Let𝐶 be a smooth projective curve of genus 𝑔. The Jacobian
𝐽 (𝐶) of 𝐶 represents the subgroup Pic0 𝐶 of Pic𝐶 which consists of invertible
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sheaves of degree zero. Refer to [318] for example. It is an abelian variety of
dimension 𝑔. Thus as far as 𝑔 ≥ 1, 𝐶 has an invertible sheaf L of degree zero
which is not a torsion in Pic0 𝐶. The divisor 𝐷 ≡ 0 such that L ' O𝐶 (𝐷) is
pseudo-effective but not Q-linearly equivalent to zero.

1.3 The Program

The classification theory in birational geometry seeks to find a good represen-
tative of each birational class of varieties and to analyse it. We shall explain
how the surface theory has matured into the minimal model program in higher
dimensions. The program will be generalised logarithmically and relatively in
the next section. We shall tacitly work over C as mentioned in the first section.
We define a contraction in the following manner.

Definition 1.3.1 A contraction 𝜋 : 𝑋 → 𝑌 is a projective morphism of normal
varieties with connected fibres, namely O𝑌 = 𝜋∗O𝑋 . It is said to be of fibre
type if dim𝑌 < dim 𝑋 . Thus a contraction is either birational or of fibre type.
We say that the contraction 𝜋 is extremal if 𝜌(𝑋/𝑌 ) = 1.

We recall the surface theory in brief. Standard books are [28], [30] and
[35]. The treatise [403] is also excellent. Let 𝑆 be a smooth projective surface.
Though one can construct a new surface from 𝑆 by blowing it up at an arbitrary
point, this operation is not essential in the birational study of 𝑆. Its exceptional
curve is superfluous. We want to obtain a simple birational model of 𝑆 by
contracting superfluous curves. Custelnuovo’s criterion for contraction enables
us to do so.

Definition 1.3.2 A curve 𝐶 in a smooth surface is called a (−1)-curve if it is
isomorphic to P1 with self-intersection number (𝐶2) = −1.

Theorem 1.3.3 (Castelnuovo’s contraction theorem) Let 𝐶 be a (−1)-curve
in a smooth projective surface 𝑆. Then𝐶 is the exceptional curve of the blow-up
𝑆 → 𝑇 of a smooth projective surface 𝑇 at a point.

The contraction of𝐶 decreases the Picard number by one as 𝜌(𝑇) = 𝜌(𝑆)−1.
Hence one eventually attains a surface without (−1)-curves by contracting them
successively. This surface is characterised as follows.

Theorem 1.3.4 If a smooth projective surface 𝑆 has no (−1)-curves, then
either

(i) the canonical divisor 𝐾𝑆 is nef or
(ii) there exists a contraction 𝑆 → 𝐵 of fibre type which is a P1-bundle over a

smooth curve or isomorphic to P2 → Spec C.
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20 The Minimal Model Program

Notice that a surface 𝑆1 with the property (i) is never birational to a surface
𝑆2 with (ii). If there were a birational map 𝑆1 d 𝑆2, then a general relative
curve 𝐶2 in the fibration 𝑆2 → 𝐵 would be mapped regularly to a curve 𝐶1
in 𝑆1 with (𝐾𝑆1 · 𝐶1) ≤ (𝐾𝑆2 · 𝐶2). This contradicts the intersection numbers
(𝐾𝑆1 · 𝐶1) ≥ 0 and (𝐾𝑆2 · 𝐶2) < 0.

In the case (ii), if 𝐵 is a curve, then 𝑆/𝐵 is described as P(E )/𝐵 by a locally
free sheaf E of rank two on 𝐵. When 𝐵 ' P1, it is completely classified as
below. The reader may refer to [377, 1 theorem 2.1.1] for the proof.

Theorem 1.3.5 (Grothendieck [159]) Every locally free sheaf of rank 𝑟 on P1

is isomorphic to a direct sum
⊕𝑟

𝑖=1 OP1 (𝑎𝑖) with 𝑎𝑖 ∈ Z.

Hence every P1-bundle over P1 is isomorphic to a Hirzebruch surface.

Definition 1.3.6 The Hirzebruch surface Σ𝑛 for 𝑛 ∈ N is the P1-bundle
Σ𝑛 = P(OP1 ⊕ OP1 (−𝑛)) over P1.

The surface 𝑆 in the case (i) is classified with showing the semi-ampleness
of 𝐾𝑆 , that is, 𝑙𝐾𝑆 is free for some positive integer 𝑙. Then the complete linear
system |𝑙𝐾𝑆 | defines a morphism 𝑆 → P𝐻0 (O𝑆 (𝑙𝐾𝑆)). When 𝑙 is sufficiently
large and divisible, the induced surjection to the image in P𝐻0 (O𝑆 (𝑙𝐾𝑆)) is
independent of 𝑙. One can refer to [30, chapter VI] for the classification below.

Theorem 1.3.7 Let 𝑆 be a smooth projective surface such that 𝐾𝑆 is nef.
Then 𝐾𝑆 is semi-ample and 𝑆 is one of the following in terms of 𝑞 = ℎ1 (O𝑆),
𝜒 = 𝜒(O𝑆) and the dimension 𝜅 of the image of 𝑆 → P𝐻0 (O𝑆 (𝑙𝐾𝑆)) for
sufficiently large and divisible 𝑙.

(i) 𝜅 = 0. 𝑆 is a K3 surface defined by 𝐾𝑆 ∼ 0 and 𝑞 = 0. 𝜒 = 2.
(ii) 𝜅 = 0. 𝑆 is an Enriques surface defined by 𝐾𝑆 � 0, 2𝐾𝑆 ∼ 0 and 𝑞 = 0.

𝜒 = 1.
(iii) 𝜅 = 0. 𝑆 is an abelian surface. 𝐾𝑆 ∼ 0, 𝑞 = 2 and 𝜒 = 0.
(iv) 𝜅 = 0. 𝑆 is a hyperelliptic surface defined as the quotient (𝐸 × 𝐹)/𝐺

of the product of elliptic curves 𝐸 and 𝐹 by a finite subgroup 𝐺 of the
translations of 𝐸 which acts on 𝐹 so that 𝐹/𝐺 ' P1. The least positive
integer 𝑟 such that 𝑟𝐾𝑆 ∼ 0 is 2, 3, 4 or 6. 𝑞 = 1 and 𝜒 = 0.

(v) 𝜅 = 1. 𝜒 ≥ 0.
(vi) 𝜅 = 2. 𝜒 ≥ 1.

Both the contraction 𝑆 → 𝑇 of a (−1)-curve and the fibration 𝑆 → 𝐵 in
Theorem 1.3.4(ii) are extremal contractions in Definition 1.3.1 with respect
to which the anti-canonical divisor −𝐾𝑆 is relatively ample. Hence given a

https://doi.org/10.1017/9781108933988.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933988.002


1.3 The Program 21

smooth projective surface 𝑆, the program for finding a model in Theorem 1.3.4
by Theorem 1.3.3 is described as the following algorithm.

1 If 𝐾𝑆 is nef, then output 𝑆, which belongs to the case (i) in Theorem 1.3.4.
2 If 𝐾𝑆 is not nef, then there exists an extremal contraction 𝜋 : 𝑆 → 𝑇 to a

smooth projective variety such that −𝐾𝑆 is relatively ample.
3 If 𝜋 is of fibre type, then output 𝑆, which belongs to the case (ii) in Theo-

rem 1.3.4.
4 If 𝜋 is birational, then replace 𝑆 by 𝑇 and go back to 1.

The minimal model program is a higher dimensional extension of this pro-
gram. However, a naive extension is confronted with several obstacles as will
be seen. Let 𝑋 be a smooth projective variety and suppose the existence of
an extremal contraction 𝑋 → 𝑌 such that −𝐾𝑋 is relatively ample. The first
obstacle is that 𝑌 may be singular.

Example 1.3.8 Let A3 = Spec C[𝑥1, 𝑥2, 𝑥3]. Consider the action of Z2 on
A3 given by the involution which sends (𝑥1, 𝑥2, 𝑥3) to (−𝑥1,−𝑥2,−𝑥3). The
quotient 𝜇 : A3 → 𝑌 = A3/Z2 = Spec 𝑅 is defined by the invariant ring
𝑅 = C[𝑥2

1, 𝑥
2
2, 𝑥

2
3, 𝑥1𝑥2, 𝑥2𝑥3, 𝑥3𝑥1]. The germ 𝑜 ∈ 𝑌 at the image 𝑜 of the origin

of A3 is an isolated singularity known as the cyclic quotient singularity of type
1
2 (1, 1, 1) in Definition 2.2.10. The canonical sheaf 𝜔𝑌 is the invariant part of
𝜇∗𝜔A3 , generated by 𝑥1𝜃, 𝑥2𝜃, 𝑥3𝜃 for 𝜃 = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3. This description
shows that 𝐾𝑌 is not Cartier at 𝑜 but 2𝐾𝑌 is Cartier.

Let 𝜋 : 𝑋 → 𝑌 be the blow-up of 𝑌 at 𝑜, or to be precise, along the maximal
ideal in O𝑌 defining 𝑜. Then 𝑋 is smooth and the exceptional locus 𝐸 in 𝑋 is
isomorphic to P2 with O𝑋 (−𝐸) ⊗ O𝐸 ' OP2 (2). It is an extremal contraction
with 𝐾𝑋 = 𝜋∗𝐾𝑌 + (1/2)𝐸 and −𝐾𝑋 is 𝜋-ample.

The next example by Ueno reveals that we cannot avoid singularities. It
exhibits a threefold which has no smooth birational models as in Theorem 1.3.4.
We need the negativity lemma, which will be used at several places.

Theorem 1.3.9 (Negativity lemma) Let 𝜋 : 𝑋 → 𝑌 be a proper birational
morphism of normal varieties. Let 𝐸 be a 𝜋-exceptional R-divisor expressed
as 𝐸 = 𝑀 + 𝐹 with a 𝜋-nef R-divisor 𝑀 and an effective R-divisor 𝐹 such that
no 𝜋-exceptional prime divisor appears in 𝐹. Then 𝐸 ≤ 0.

Proof It suffices to work about the generic point 𝜂𝑖 of the image 𝜋(𝐸𝑖) of each
prime component 𝐸𝑖 of 𝐸 . Replacing 𝜋 by the base change to the intersection of
general hyperplane sections of𝑌 about 𝜂𝑖 , we may assume that 𝜋(𝐸𝑖) is a point
in 𝑌 . By Chow’s lemma, we may assume that 𝜋 is a contraction. Then cutting
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it with general hyperplane sections of 𝑋 , we may assume that 𝜋 : 𝑋 → 𝑌 is a
birational morphism of surfaces. By resolution, we may also assume that 𝑋 is
smooth.

After this reduction, the exceptional R-divisor 𝐸 = 𝑀 + 𝐹 is 𝜋-nef on the
smooth surface 𝑋 . Since 𝜋 is projective, there exists an effective divisor 𝐴 on
𝑋 supported on the exceptional locus of 𝜋 such that −𝐴 is 𝜋-ample. If 𝐸 � 0,
then there would exist a positive real number 𝑟 and an exceptional curve 𝐶
such that 𝐸 − 𝑟𝐴 ≤ 0 and such that 𝐶 has coefficient zero in 𝐸 − 𝑟𝐴. Then
((𝐸 − 𝑟𝐴) · 𝐶) ≤ 0, which contradicts the 𝜋-ampleness of 𝐸 − 𝑟𝐴. �

Example 1.3.10 (Ueno [458, section 16]) Let 𝐴 be an abelian threefold. It is
described as the quotient C3/Γ of the complex threefold C3 by a lattice Γ ' Z6

spanning C3 as a real vector space. The involution of 𝐴 which sends 𝑥 to −𝑥
has 26 = 64 fixed points. The associated quotient 𝑋 = 𝐴/Z2 has at each fixed
point a cyclic quotient singularity of type 1

2 (1, 1, 1) appeared in Example 1.3.8.
The sheaf O𝑋 (2𝐾𝑋 ) is globally generated by (𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3)⊗2 for the
coordinates 𝑥1, 𝑥2, 𝑥3 of C3. Hence 2𝐾𝑋 ∼ 0. For the same reason as explained
after Theorem 1.3.4, 𝑋 is never birational to a threefold 𝑋 ′ equipped with a
contraction of fibre type with respect to which −𝐾𝑋 ′ is relatively ample. Let 𝑌
be an arbitrary smooth projective variety birational to 𝑋 . Using the negativity
lemma, we shall prove that 𝐾𝑌 is never nef.

The blow-up 𝐵 of 𝑋 at all the 64 singular points is smooth and 2𝐾𝐵 ∼ 𝐸 for
the sum 𝐸 =

∑64
𝑖=1 𝐸𝑖 of the exceptional divisors 𝐸𝑖 ' P2. Take a common log

resolution𝑊 of (𝐵, 𝐸) and 𝑌 with 𝑝1 : 𝑊 → 𝑋 and 𝑝2 : 𝑊 → 𝑌 . Let 𝑇𝑖 denote
the sum of 𝑝𝑖-exceptional prime divisors on 𝑊 and let 𝑇 denote the common
part of 𝑇1 and 𝑇2. We write 2𝐾𝑊 = 𝑝∗1 (2𝐾𝑋 ) + 𝐹1 +𝐺1 by effective divisors 𝐹1
and𝐺1 with support 𝑇 and 𝑇1−𝑇 respectively. Similarly 𝐾𝑊 = 𝑝∗2𝐾𝑌 +𝐹2+𝐺2
by effective divisors 𝐹2 and 𝐺2 with support 𝑇 and 𝑇2 − 𝑇 . Then

𝐹1 − 2𝐹2 + 𝐺1 = −𝑝∗1 (2𝐾𝑋 ) + 𝑝
∗
2 (2𝐾𝑌 ) + 2𝐺2.

If 𝐾𝑌 were nef, then by the negativity lemma for 𝑝1, the 𝑝1-exceptional
divisor 𝐹1 − 2𝐹2 + 𝐺1 would be negative in the sense that 𝐹1 − 2𝐹2 + 𝐺1 ≤ 0.
Hence 𝐺1 = 0, by which 𝑇 = 𝑇1. It follows that the rational map 𝑋 d 𝑌

produces no new divisors on 𝑌 . In particular, 𝐾𝑌 is the strict transform of 𝐾𝑋
and hence 2𝐾𝑌 ∼ 0. As a consequence, one obtains the relation 𝐹1 ∼ 2𝐹2+2𝐺2
of 𝑝2-exceptional divisors. This is the equality 𝐹1 = 2𝐹2+2𝐺2 by the negativity
lemma for 𝑝2. However, the strict transform of 𝐸𝑖 appears in 𝐹1 with coefficient
one, which is absurd.
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As a solution to these obstacles, the minimal model program admits mild
singularities as in the above examples. We define terminal singularities by
making the class of these singularities as small as possible.

Definition 1.3.11 Let 𝜋 : 𝑌 → 𝑋 be a proper birational morphism of normal
varieties. Provided that 𝑋 is Q-Gorenstein, there exists a unique exceptional
Q-divisor 𝐾𝑌 /𝑋 such that 𝐾𝑌 = 𝜋∗𝐾𝑋 + 𝐾𝑌 /𝑋 . We call 𝐾𝑌 /𝑋 the relative
canonical divisor.

Definition 1.3.12 A normal variety 𝑋 is said to be terminal, or to have
terminal singularities, if 𝑋 is Q-Gorenstein and for any resolution 𝑋 ′ → 𝑋 ,
every exceptional prime divisor appears in 𝐾𝑋 ′/𝑋 with positive coefficient.

The definition uses resolution of singularities. It is equivalent to the exis-
tence of some resolution 𝑋 ′ → 𝑋 satisfying the required property. See also
Definition 1.4.3. Terminal threefold singularities will be classified in the next
chapter.

Theorem 1.3.13 A surface is terminal if and only if it is smooth.

Proof Every surface 𝑆 has the minimal resolution 𝑆′ → 𝑆, namely a unique
resolution such that 𝐾𝑆′/𝑆 is relatively nef. Since 𝐾𝑆′/𝑆 ≤ 0 by the negativity
lemma, if 𝑆 is terminal, then 𝑆′ has no exceptional curves, that is, 𝑆 is smooth.
The converse is obvious. �

Let 𝑋 be a terminal projective variety. Unless 𝐾𝑋 is nef, the cone theorem
with the contraction theorem produces an extremal contraction 𝑋 → 𝑌 such
that −𝐾𝑋 is relatively ample. Mori [332] first established the cone theorem
for smooth varieties and constructed a contraction from a smooth threefold.
Whereas he used the deformation theory of curves in positive characteristic,
Kawamata [232] and others developed the extension to singular varieties by a
cohomological method. Below we extract the part needed for the program. The
precise statements will be provided in Theorems 1.4.7 and 1.4.9.

Theorem 1.3.14 Let 𝑋 be a terminal projective variety. If 𝐾𝑋 is not nef, then
there exists an extremal contraction 𝜋 : 𝑋 → 𝑌 to a normal projective variety
such that −𝐾𝑋 is relatively ample. It always satisfies Pic 𝑋/𝜋∗ Pic𝑌 ' Z.

The most serious obstacle is that 𝜋 : 𝑋 → 𝑌 may be isomorphic in codi-
mension one. We say that such 𝜋 is small as defined below. In this case, the
canonical divisor 𝐾𝑌 is never Q-Cartier and it does not make sense to ask if 𝐾𝑌
is nef. If 𝐾𝑌 were Q-Cartier, then the pull-back 𝐾𝑋 = 𝜋∗𝐾𝑌 would contradict
the 𝜋-ampleness of −𝐾𝑋 . Hence it is necessary to reconstruct a reasonable
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variety 𝑋+ from 𝑌 , which is called the flip of 𝑋/𝑌 . In the book, by a flip 𝑋 is
assumed to be terminal, and a generalised notion will be referred to as a log
flip as defined in the next section.

Definition 1.3.15 Let 𝑓 : 𝑋 d 𝑌 be a birational map of normal varieties
factorised as 𝑓 = 𝑞 ◦ 𝑝−1 with contractions 𝑝 : 𝑊 → 𝑋 and 𝑞 : 𝑊 → 𝑌 .
We call 𝑓 a birational contraction map if all 𝑝-exceptional prime divisors
are 𝑞-exceptional. In other words, the strict transform defines a surjection
𝑓∗ : 𝑍1 (𝑋) � 𝑍1 (𝑌 ) of the groups of Weil divisors. We say that 𝑓 is small if it
is isomorphic in codimension one, that is, 𝑓∗ is an isomorphism 𝑍1 (𝑋) ' 𝑍1 (𝑌 ).

Definition 1.3.16 A flipping contraction 𝜋 : 𝑋 → 𝑌 is a small contraction
from a terminal variety such that −𝐾𝑋 is 𝜋-ample. The flip of 𝜋 is a small
contraction 𝜋+ : 𝑋+ → 𝑌 such that 𝐾𝑋+ is 𝜋+-ample. The transformation 𝑋 d
𝑋+ is also called the flip by abuse of language. We say that a flipping contraction
𝜋 : 𝑋 → 𝑌 and the flip of 𝜋 are elementary if 𝑋 is Q-factorial and 𝜋 is extremal.

Notation 1.3.17 For a Weil divisor 𝐷 on a normal variety 𝑋 , we write the
graded O𝑋 -algebra R (𝑋, 𝐷) =

⊕
𝑖∈N O𝑋 (𝑖𝐷).

The flip is described as 𝑋+ = Proj𝑌 R (𝑌, 𝑙𝐾𝑌 ) with a positive integer 𝑙 such
that 𝑙𝐾𝑋+ is 𝜋+-very ample. Note that R (𝑌, 𝑙𝐾𝑌 ) = 𝜋+∗R (𝑋+, 𝑙𝐾𝑋+ ) as 𝜋+ is
small. Hence the flip is unique if it exists. Lemma 1.5.20 further provides the
description 𝑋+ = Proj𝑌 R (𝑌, 𝐾𝑌 ). One can consider the flip 𝑋 d 𝑋+ to be the
operation of replacing curves with negative intersection number with 𝐾𝑋 by
curves with positive intersection number with 𝐾𝑋+ . We shall explain the first
example of a flip by Francia as a quotient of the Atiyah flop.

Example 1.3.18 (Atiyah [24]) Consider the germ 𝑜 ∈ 𝑌 = (𝑥1𝑥2 + 𝑥3𝑥4 =

0) ⊂ A4 discussed in Example 1.2.3. The canonical divisor 𝐾𝑌 is Cartier by
the adjunction 𝐾𝑌 = (𝐾A4 + 𝑌 ) |𝑌 . Let 𝜋 : 𝑋 → 𝑌 be the blow-up along the
ideal (𝑥2, 𝑥4)O𝑌 in O𝑌 . Then 𝑋 is smooth and has exceptional locus 𝐶 =

𝜋−1 (𝑜) ' P1. The blow-up 𝜑 : 𝐵 → 𝑌 at 𝑜 factors through 𝜋 as 𝜑 = 𝜋 ◦ 𝜇 for
the contraction 𝜇 : 𝐵→ 𝑋 of the exceptional locus 𝐹 ' P1×P1 of 𝜑 to𝐶 ' P1.

Corresponding to the other contraction of 𝐹 to P1, the morphism 𝜑 also
factors through the blow-up 𝜋+ : 𝑋+ → 𝑌 along the ideal (𝑥1, 𝑥4)O𝑌 in O𝑌 . It
has exceptional locus𝐶+ = (𝜋+)−1 (𝑜) ' P1. The transformation 𝑋 → 𝑌 ← 𝑋+

is small with 𝐾𝑋 = 𝜋∗𝐾𝑌 and 𝐾𝑋+ = (𝜋+)∗𝐾𝑌 . This is known as the Atiyah
flop, which is a classical example of a flop in Definition 5.1.6.

Example 1.3.19 (Francia [125]) We constructed the Atiyah flop 𝑋 → 𝑌 ←
𝑋+ for 𝑜 ∈ 𝑌 = (𝑥1𝑥2 + 𝑥3𝑥4 = 0) ⊂ A4. Act Z2 on 𝑌 by the involution which
sends (𝑥1, 𝑥2, 𝑥3, 𝑥4) to (−𝑥1, 𝑥2, 𝑥3,−𝑥4). The fixed locus in 𝑌 is the divisor
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𝐷 = (𝑥1 = 𝑥4 = 0). This action extends to 𝑋 and 𝑋+ and one can consider the
quotients 𝜋′ : 𝑋 ′ = 𝑋/Z2 → 𝑌 ′ = 𝑌/Z2 and 𝜋′+ : 𝑋 ′+ = 𝑋+/Z2 → 𝑌 ′. Then 𝑋 ′
has a cyclic quotient singularity of type 1

2 (1, 1, 1) appeared in Example 1.3.8,
whilst 𝑋 ′+ remains smooth.

Let 𝐶 ′ = 𝐶/Z2 ' P1 and 𝐶 ′+ = 𝐶+/Z2 ' P1 be the exceptional curves in 𝑋 ′
and 𝑋 ′+ respectively. We shall compute the intersection number (𝐾𝑋 ′ ·𝐶 ′). One
has 𝑝∗𝐶 = 2𝐶 ′ as a cycle by 𝑝 : 𝑋 → 𝑋 ′. On the other hand, the ramification
formula in Theorem 2.2.20 gives 𝑝∗𝐾𝑋 ′ = 𝐾𝑋 − 𝐷𝑋 with the strict transform
𝐷𝑋 of 𝐷. Hence (𝐾𝑋 ′ · 𝐶 ′) = ((𝐾𝑋 − 𝐷𝑋 ) · 𝐶/2) = −1/2 by the projection
formula. In like manner, one has (𝐾𝑋 ′+ · 𝐶 ′+) = 1 using 𝑝+ : 𝑋+ → 𝑋 ′+ with
𝑝+∗𝐶

+ = 𝐶 ′+. Thus 𝜋′+ is the flip of 𝜋′, which is known as the Francia flip.

The flip 𝑋 d 𝑋+ retains the property of being terminal. If it is elementary,
then it also keeps the Picard number unchanged.

Lemma 1.3.20 Let 𝜋+ : 𝑋+ → 𝑌 be the flip of a flipping contraction 𝜋 : 𝑋 →
𝑌 . Then 𝑋+ as well as 𝑋 is terminal. If 𝑋 and𝑌 are projective and the flip 𝑋 d
𝑋+ is elementary, then 𝑋+ is Q-factorial and projective and 𝜌(𝑋) = 𝜌(𝑋+).

Proof Take a common resolution𝑊 of 𝑋 and𝑌 with 𝜇 : 𝑊 → 𝑋 and 𝜇+ : 𝑊 →
𝑋+. Then 𝐾𝑊 /𝑋 − 𝐾𝑊 /𝑋+ = (𝜇+)∗𝐾𝑋+ − 𝜇∗𝐾𝑋 is 𝜇-exceptional and 𝜇-nef.
Hence 𝐾𝑊 /𝑋 ≤ 𝐾𝑊 /𝑋+ by the negativity lemma, showing that 𝑋+ is terminal
as is 𝑋 .

Suppose that 𝑋 and 𝑌 are projective and the flip is elementary. Then 𝑋+ is
projective. By Theorem 1.3.14, (Pic 𝑋/𝜋∗ Pic𝑌 ) ⊗Q ' Q and it is generated by
the 𝜋-ample divisor −𝐾𝑋 . Hence for any divisor 𝐷 on 𝑋 , there exists a rational
number 𝑐 such that 𝐷𝑌 + 𝑐𝐾𝑌 = 𝜋∗ (𝐷 + 𝑐𝐾𝑋 ) is Q-Cartier where 𝐷𝑌 = 𝜋∗𝐷.
Then the strict transform 𝐷+ in 𝑋+ of 𝐷 is expressed as 𝐷+ = (𝜋+)∗ (𝐷𝑌 +
𝑐𝐾𝑌 ) − 𝑐𝐾𝑋+ , which is Q-Cartier. Thus 𝑋+ is Q-factorial and 𝐾𝑋+ generates
(Pic 𝑋+/(𝜋+)∗ Pic𝑌 ) ⊗ Q. In particular, 𝜌(𝑋+) = 𝜌(𝑌 ) + 1 = 𝜌(𝑋). �

We are now in the position of stating the minimal model program. Given a
Q-factorial terminal projective variety 𝑋 , it finds a birational contraction map
𝑋 d 𝑌 such that 𝑌 is a minimal model or admits a structure of a Mori fibre
space.

Definition 1.3.21 Let 𝑋 be a Q-factorial terminal projective variety. It is
called a minimal model if 𝐾𝑋 is nef. A Mori fibre space 𝑋 → 𝑆 is an ex-
tremal contraction of fibre type to a normal projective variety such that −𝐾𝑋 is
relatively ample. The base 𝑆 will be proved to be Q-factorial in Lemma 1.4.13.

If a Q-factorial terminal projective variety 𝑋 is not a minimal model, then
Theorem 1.3.14 provides an extremal contraction 𝑋 → 𝑌 to a normal projective
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variety such that −𝐾𝑋 is relatively ample. By Lemma 1.3.23, it is a Mori fibre
space, a flipping contraction or a divisorial contraction below.

Definition 1.3.22 A divisorial contraction is a birational contraction 𝜋 : 𝑋 →
𝑌 between terminal varieties such that −𝐾𝑋 is 𝜋-ample and such that the
exceptional locus 𝐸 is a prime divisor on 𝑋 . One can write 𝐾𝑋 = 𝜋∗𝐾𝑌 + 𝑑𝐸
with a positive rational number 𝑑 since 𝑌 is terminal. In particular, −𝐸 is 𝜋-
ample. We say that a divisorial contraction 𝜋 : 𝑋 → 𝑌 is elementary if 𝑋 is
Q-factorial and 𝜋 is extremal.

Lemma 1.3.23 Let 𝜋 : 𝑋 → 𝑌 be an extremal contraction from a Q-factorial
terminal projective variety to a normal projective variety such that −𝐾𝑋 is
𝜋-ample. If 𝜋 is birational but not small, then 𝜋 is a divisorial contraction, 𝑌 is
Q-factorial and 𝜌(𝑋) = 𝜌(𝑌 ) + 1.

Proof We shall prove that the exceptional locus is a prime divisor. The re-
maining assertions are derived from this in the same way as for Lemma 1.3.20.

Take a hyperplane section 𝐻𝑌 of 𝑌 such that 𝜋∗𝐻𝑌 contains an exceptional
prime divisor. Write 𝜋∗𝐻𝑌 = 𝐻 + 𝐸 with the strict transform 𝐻 of 𝐻𝑌 and
an exceptional divisor 𝐸 . By 𝜌(𝑋/𝑌 ) = 1, the divisor −𝐸 ≡𝑌 𝐻 is 𝜋-ample
and the support of 𝐸 contains a prime divisor 𝐹 such that −𝐹 is 𝜋-ample.
If a curve 𝐶 not in 𝐹 were contracted to a point by 𝜋, then the intersection
number (𝐹 · 𝐶) ≥ 0 would contradict the relative ampleness of −𝐹. Thus 𝐹
must coincide with the exceptional locus. �

Definition 1.3.24 The minimal model program, or the MMP for short, in
the category C of Q-factorial terminal projective varieties is the algorithm for
𝑋 ∈ C which outputs 𝑌 ∈ C with a birational contraction map 𝑋 d 𝑌 in the
following manner.

1 If 𝐾𝑋 is nef, then output 𝑋 ∈ C as a minimal model.
2 If 𝐾𝑋 is not nef, then there exists an extremal contraction 𝜋 : 𝑋 → 𝑌 as in

Theorem 1.3.14.
3 If 𝜋 is a Mori fibre space, then output 𝑋 ∈ C .
4 If 𝜋 is a divisorial contraction, then 𝑌 ∈ C and 𝜌(𝑌 ) = 𝜌(𝑋) − 1 by

Lemma 1.3.23. Replace 𝑋 by 𝑌 and go back to 1.
5 If 𝜋 is a flipping contraction, then construct the flip 𝜋+ : 𝑋+ → 𝑌 of 𝜋, for

which 𝑋+ ∈ C and 𝜌(𝑋+) = 𝜌(𝑋) by Lemma 1.3.20. Replace 𝑋 by 𝑋+ and
go back to 1.

In order for the MMP to function, the existence and termination of flips
are necessary. The termination means the non-existence of an infinite loop by
the step 5 of the algorithm as stated in Conjecture 1.3.26. Assuming them,

https://doi.org/10.1017/9781108933988.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933988.002


1.3 The Program 27

the MMP ends with a minimal model or a Mori fibre space by induction of
the Picard number. The existence of flips was first proved by Mori [335] for
threefold flips and fully settled by Birkar, Cascini, Hacon and McKernan [48]
as in Theorem 1.4.11. However, the full form of Conjecture 1.3.26 is still open
in dimension greater than four in spite of the termination of flips with scaling
in the setting of Corollary 1.5.13. The termination in dimension three will
be demonstrated in Theorem 1.6.3. The result in dimension four is in [249,
theorem 5.1.15].

Theorem 1.3.25 The flip in Definition 1.3.16 exists.

Conjecture 1.3.26 (Termination of flips) Let 𝑋 be a Q-factorial terminal
projective variety. Then there exists no infinite sequence 𝑋 = 𝑋0 d 𝑋1 d · · ·
of elementary flips 𝑋𝑖 → 𝑌𝑖 ← 𝑋𝑖+1 with 𝑋𝑖 and 𝑌𝑖 projective.

As is the case with the program for surfaces, which of a minimal model or a
Mori fibre space the MMP outputs is determined by the input variety.

Proposition 1.3.27 Let 𝑋 be a Q-factorial terminal projective variety. If 𝐾𝑋
is pseudo-effective, then the output by the MMP from 𝑋 is always a minimal
model. If 𝐾𝑋 is not pseudo-effective, then the output is always a Mori fibre
space.

Proof Let 𝑋 = 𝑋0 d · · · d 𝑋𝑛 = 𝑌 be an output of the MMP from 𝑋 , where
each 𝑓𝑖 : 𝑋𝑖 d 𝑋𝑖+1 is a divisorial contraction or a flip. It suffices to prove the
equivalence of the pseudo-effectivity of 𝐾𝑋 and that of 𝐾𝑌 .

Fix an ample divisor 𝐴 on 𝑋 . Its strict transform 𝐴𝑌 in 𝑌 is big. For a
small positive rational number 𝜀, the strict transform −(𝐾𝑋𝑖 + 𝜀𝐴𝑖) in 𝑋𝑖

of −(𝐾𝑋 + 𝜀𝐴) is 𝑓𝑖-ample when 𝑓𝑖 is a divisorial contraction. Then for a
sufficiently large and divisible integer 𝑙, the multiple 𝑙 (𝐾𝑋 +𝜀𝐴) is integral and
𝐻0 (O𝑋𝑖 (𝑙 (𝐾𝑋𝑖 + 𝜀𝐴𝑖))) ' 𝐻0 (O𝑋𝑖+1 (𝑙 (𝐾𝑋𝑖+1 + 𝜀𝐴𝑖+1))). It follows that

𝐻0 (O𝑋 (𝑙 (𝐾𝑋 + 𝜀𝐴))) ' 𝐻0 (O𝑌 (𝑙 (𝐾𝑌 + 𝜀𝐴𝑌 ))).

Thus the limit 𝐾𝑋 of 𝐾𝑋 + 𝜀𝐴 with 𝜀 approaching zero is pseudo-effective if
and only if so is the limit 𝐾𝑌 of 𝐾𝑌 + 𝜀𝐴𝑌 . �

The problem subsequent to the MMP is to study Mori fibre spaces and
minimal models. The Sarkisov program, which will be introduced in Chapter 6,
is a standard tool for analysing birational maps of Mori fibre spaces. In the study
of minimal models, the rational map defined by a multiple of the canonical
divisor plays an important role as in Theorem 1.3.7. We expect the following
abundance conjecture. It is only known up to dimension three as will be
demonstrated in Chapter 10. The designation of abundance is by the assertion
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in Theorem 1.7.12 that the canonical divisor is semi-ample if and only if it is
nef and abundant in the sense of Definition 1.7.10.

Conjecture 1.3.28 (Abundance) If 𝑋 is a minimal model, then 𝐾𝑋 is semi-
ample.

1.4 Logarithmic and Relative Extensions

We formulated the MMP for projective varieties. However, it has turned out
that the program becomes much more powerful by logarithmic and relative
extensions. This perspective proves its worth even in the study of the original
MMP. For example, the flip 𝑋+/𝑌 of a flipping contraction 𝑋/𝑌 is considered
to be the canonical model of 𝑋/𝑌 . The purpose of this section is to outline the
generalisations of the MMP. The books [277] and [307] elucidate the abstract
side of the program. The treatise [249] is standard until now.

Let 𝑋 be an algebraic scheme. Let 𝑍 be a closed subvariety of 𝑋 and
let 𝔭 denote the ideal sheaf in O𝑋 defining 𝑍 . The order ord𝑍 I along 𝑍

of a coherent ideal sheaf I in O𝑋 is the maximal 𝑙 ∈ N ∪ {∞} such that
I O𝑋,𝜂 ⊂ 𝔭𝑙O𝑋,𝜂 at the generic point 𝜂 of 𝑍 , where we define 𝔭∞ to be
zero. We write ord𝑍 𝑓 = ord𝑍 𝑓O𝑋 for 𝑓 ∈ O𝑋 . When 𝑋 is normal, the order
ord𝑍 𝐷 of a Q-Cartier divisor 𝐷 on 𝑋 is defined as 𝑟−1 ord𝑍 O𝑋 (−𝑟𝐷) by a
positive integer 𝑟 such that 𝑟𝐷 is Cartier, which is independent of the choice of
𝑟 . Beware of the difference between ord𝑍 𝐷 and ord𝑍 O𝑋 (−𝐷). The notion of
ord𝑍 𝐷 is extended linearly to R-Cartier R-divisors.

Let 𝑋 be a variety. A divisor over 𝑋 means the equivalence class of a prime
divisor 𝐸 on a normal variety 𝑌 equipped with a birational morphism 𝑌 → 𝑋 ,
where divisors 𝐸 on 𝑌/𝑋 and 𝐸 ′ on 𝑌 ′/𝑋 are equivalent if 𝐸 is the strict
transform of 𝐸 ′ and vice versa, that is, 𝐸 and 𝐸 ′ define the same valuation on
the function field of 𝑋 . A divisor 𝐸 over 𝑋 is said to be exceptional if it is
not realised as a prime divisor on 𝑋 . The order ord𝐸 I along 𝐸 of a coherent
ideal sheaf I in O𝑋 is defined as ord𝐸 I O𝑌 , which is independent of the
realisation 𝐸 ⊂ 𝑌/𝑋 . The orders ord𝐸 𝑓 and ord𝐸 𝐷 are defined in like manner
for a function 𝑓 in O𝑋 and an R-Cartier R-divisor 𝐷 on 𝑋 .

Definition 1.4.1 The centre 𝑐𝑋 (𝐸) of a divisor 𝐸 over 𝑋 is the closure of the
image 𝜋(𝐸) of 𝐸 by 𝜋 : 𝑌 → 𝑋 on which 𝐸 is realised as a prime divisor.

The logarithmic setting treats pairs (𝑋,Δ) using 𝐾𝑋 + Δ instead of 𝐾𝑋 . A
pair (𝑋,Δ) consists of a normal variety 𝑋 and an effective R-divisor Δ on 𝑋
such that 𝐾𝑋 + Δ is R-Cartier, in which Δ is referred to as the boundary.
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Definition 1.4.2 Let (𝑋,Δ) be a pair and let 𝐸 be a divisor over 𝑋 realised on
𝜋 : 𝑌 → 𝑋 . One can write 𝐾𝑌 = 𝜋∗ (𝐾𝑋 + Δ) + 𝐴 uniquely with an R-divisor
𝐴 such that 𝜋∗𝐴 = −Δ. The log discrepancy 𝑎𝐸 (𝑋,Δ) of 𝐸 with respect to
(𝑋,Δ) is defined as 𝑎𝐸 (𝑋,Δ) = 1 + ord𝐸 𝐴. When Δ is zero, we write 𝑎𝐸 (𝑋)
for 𝑎𝐸 (𝑋, 0) and occasionally prefer the discrepancy of 𝐸 which is defined as
𝑎𝐸 (𝑋) − 1 = ord𝐸 𝐾𝑌 /𝑋 .

Definition 1.4.3 We say that a pair (𝑋,Δ) is terminal, canonical, purely log
terminal (plt for short) respectively if 𝑎𝐸 (𝑋,Δ) > 1, ≥ 1, > 0 respectively for
all divisors 𝐸 exceptional over 𝑋 . We say that (𝑋,Δ) is Kawamata log terminal
(klt), log canonical (lc) respectively if 𝑎𝐸 (𝑋,Δ) > 0, ≥ 0 respectively for all
divisors 𝐸 over 𝑋 . We say that (𝑋,Δ) is divisorially log terminal (dlt) if it is lc
and there exists a log resolution 𝑌 of (𝑋,Δ) such that 𝑎𝐸 (𝑋,Δ) > 0 for every
prime divisor 𝐸 on 𝑌 that is exceptional over 𝑋 . When Δ is zero, in which 𝑋
is Q-Gorenstein, we simply say that 𝑋 is terminal, canonical and so forth. This
coincides with Definition 1.3.12. The notions of klt, plt and dlt singularities for
Δ = 0 are the same and we just say that 𝑋 is log terminal (lt).

The vanishing of higher cohomologies enables us to compute the dimen-
sion of global sections of a sheaf numerically. The Kodaira vanishing and its
generalisations are indispensable in complex birational geometry. The classical
vanishing by Kodaira was proved in the theory of harmonic analysis. It does
not hold in positive characteristic.

Theorem 1.4.4 (Kodaira vanishing [257]) Let 𝑋 be a smooth projective com-
plex variety and let L be an ample invertible sheaf on 𝑋 . Then𝐻𝑖 (𝜔𝑋⊗L ) = 0
for all 𝑖 ≥ 1.

The following generalisation is one of the most fundamental tools in the mini-
mal model theory. It is obtained by the covering trick associated with a Kummer
extension. It includes the Grauert–Riemenschneider vanishing 𝑅𝑖𝜋∗𝜔𝑋 = 0 for
𝑖 ≥ 1 for a generically finite proper morphism 𝜋 from a smooth variety 𝑋 [152].

Theorem 1.4.5 (Kawamata–Viehweg vanishing [230], [463]) Let (𝑋,Δ) be
a klt pair and let 𝜋 : 𝑋 → 𝑌 be a proper morphism to a variety. Let 𝐷 be a
Q-Cartier integral divisor on 𝑋 such that 𝐷 − (𝐾𝑋 + Δ) is 𝜋-nef and 𝜋-big.
Then 𝑅𝑖𝜋∗O𝑋 (𝐷) = 0 for all 𝑖 ≥ 1.

We shall formulate the minimal model program for an lc pair (𝑋,Δ) with a
projective morphism 𝜋 : 𝑋 → 𝑆 to a fixed variety. The contraction and cone
theorems provide extremal contractions in the program.
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Definition 1.4.6 Let 𝐶 be a convex cone in a finite dimensional real vector
space 𝑉 . An extremal face 𝐹 of 𝐶 means a convex subcone of 𝐶 such that
if 𝑣, 𝑤 ∈ 𝐶 and 𝑣 + 𝑤 ∈ 𝐹, then 𝑣, 𝑤 ∈ 𝐹. An extremal face 𝑅 is called an
extremal ray if 𝑅 is a half-line R≥0𝑣 ∩ 𝐶 with one generator 𝑣 ∈ 𝑅 \ 0. For
𝜆 ∈ 𝑉∨ = Hom(𝑉,R), we say that an extremal face 𝐹 is negative with respect
to 𝜆, or 𝜆-negative, if 𝜆(𝑣) < 0 for all 𝑣 ∈ 𝐹 \ 0.

We consider the closed cone NE(𝑋/𝑆) of curves in 𝑁1 (𝑋/𝑆) and regard
𝑁1 (𝑋/𝑆) as the dual of 𝑁1 (𝑋/𝑆) via the intersection pairing.

Theorem 1.4.7 (Contraction theorem) Let (𝑋,Δ) be an lc pair with a projec-
tive morphism 𝜋 : 𝑋 → 𝑆 to a variety. Let 𝐹 be a (𝐾𝑋 + Δ)-negative extremal
face of NE(𝑋/𝑆). Then there exists a unique contraction 𝜑 : 𝑋 → 𝑌 through
which 𝜋 factors as 𝜋 = 𝜋𝑌 ◦ 𝜑 for a projective morphism 𝜋𝑌 : 𝑌 → 𝑆 such that
a relative curve 𝐶 in 𝑋/𝑆 is contracted to a point in 𝑌 if and only if [𝐶] ∈ 𝐹.
Further the natural sequence

0→ Pic𝑌
𝜑∗

−−→ Pic 𝑋 → 𝑁1 (𝑋/𝑌 )

is exact and in particular 𝜌(𝑋/𝑆) = 𝜌(𝑌/𝑆) + 𝜌(𝑋/𝑌 ).

We say that the contraction 𝜑 : 𝑋 → 𝑌 above is associated with the face 𝐹.
The dimension of 𝐹 equals the relative Picard number 𝜌(𝑋/𝑌 ). By Kleiman’s
criterion, 𝐾𝑋 + Δ is relatively ample with respect to 𝜑.

The contraction theorem is a corollary to the base-point free theorem.
Kawamata [232] completed it for klt pairs using the vanishing theorem and
Shokurov’s non-vanishing theorem [423].

Theorem 1.4.8 (Base-point free theorem) Let (𝑋,Δ) be a klt pair with a
proper morphism 𝜋 : 𝑋 → 𝑆 to a variety. Let 𝐷 be a 𝜋-nef Cartier divisor on
𝑋 such that 𝑎𝐷 − (𝐾𝑋 +Δ) is 𝜋-nef and 𝜋-big for some positive integer 𝑎. Then
there exists a positive integer 𝑙0 such that 𝑙𝐷 is 𝜋-free for all 𝑙 ≥ 𝑙0.

Thanks to the cone theorem, every extremal face 𝐹 treated by the contrac-
tion theorem is spanned by the classes of rational curves. The cone theorem
originated in the work of Mori [331] on the Hartshorne conjecture on a char-
acterisation of the projective space. Kawamata [232] supplemented by [259]
established the theorem for klt pairs by a cohomological method. It was ex-
tended to lc pairs by Fujino [129].

Theorem 1.4.9 (Cone theorem) Let (𝑋,Δ) be an lc pair with a projective
morphism 𝜋 : 𝑋 → 𝑆 to a variety. Let 𝐻 be a 𝜋-ample R-divisor on 𝑋 . Then

NE(𝑋/𝑆) = NE(𝑋/𝑆)𝐾𝑋+Δ+𝐻 ≥0 +
∑︁
𝑖

R≥0 [𝐶𝑖],
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where NE(𝑋/𝑆)𝐾𝑋+Δ+𝐻 ≥0 = {𝑧 ∈ NE(𝑋/𝑆) | ((𝐾𝑋 + Δ + 𝐻) · 𝑧) ≥ 0} and∑
𝑖 R≥0 [𝐶𝑖] is a finite sum of extremal rays generated by the class of a rational

relative curve 𝐶𝑖 in 𝑋/𝑆.

It is remarkable that the degree of the generator 𝐶𝑖 of an extremal ray is
bounded. This is essentially due to Kawamata [237] and extended in [129].

Theorem 1.4.10 Let (𝑋,Δ) be an lc pair with a projective morphism 𝑋 →
𝑆 to a variety. Then every (𝐾𝑋 + Δ)-negative extremal ray of NE(𝑋/𝑆) is
generated by the class of a rational relative curve 𝐶 in 𝑋/𝑆 such that 0 <

(−(𝐾𝑋 + Δ) · 𝐶) ≤ 2 dim 𝑋 .

Fix the base variety 𝑆 and let C 𝑙 denote the category of Q-factorial lc pairs
(𝑋,Δ) projective over 𝑆, meaning that (𝑋,Δ) is lc with 𝑋 being Q-factorial
and equipped with a projective morphism to 𝑆.

Let (𝑋/𝑆,Δ) ∈ C 𝑙 . We call (𝑋/𝑆,Δ) a log minimal model over 𝑆 if 𝐾𝑋 + Δ
is relatively nef. Let 𝜋 : 𝑋 → 𝑌/𝑆 be an extremal contraction associated with a
(𝐾𝑋 + Δ)-negative extremal ray of NE(𝑋/𝑆). The contraction 𝜋 is a log Mori
fibre space if it is of fibre type, a log divisorial contraction if it is birational but
not small and a log flipping contraction if it is small. If 𝜋 is birational but not
small, then the exceptional locus is a prime divisor similarly to Lemma 1.3.23.
When 𝑋 is terminal and Δ is zero, a log minimal model 𝑋/𝑆 and a log Mori
fibre space 𝑋 → 𝑌/𝑆 are usually called a relative minimal model and a relative
Mori fibre space. These generalise Definition 1.3.21 by relaxing the abstract
projectivity of 𝑋 and 𝑌 .

Let (𝑋,Δ) be an lc pair. As in Definitions 1.3.16 and 1.3.22, we use the
terminology of a log divisorial or flipping contraction 𝜋 : 𝑋 → 𝑌 without
assuming that it is elementary. We say that 𝜋 is elementary if 𝑋 is Q-factorial
and 𝜋 is extremal. A log flipping contraction 𝜋 : 𝑋 → 𝑌 with respect to (𝑋,Δ)
is a small contraction such that −(𝐾𝑋 + Δ) is 𝜋-ample. The log flip of 𝜋 is a
small contraction 𝜋+ : 𝑋+ → 𝑌 such that 𝐾𝑋+ + Δ+ is 𝜋+-ample for the strict
transform Δ+ of Δ. The transformation 𝑋 d 𝑋+ is also called the log flip. After
Shokurov’s establishment of threefold log flips [424] and his attempt at higher
dimensional generalisation [426], Birkar, Cascini, Hacon and McKernan [48]
proved the existence of log flips for klt pairs. This was extended to lc pairs
substantially by Birkar [45] and Hacon–Xu [175].

Theorem 1.4.11 (Existence of log flips) The log flip exists for an lc pair.

Log divisorial contractions and log flips improve singularities as shown by the
next lemma, which is proved essentially in the same manner as Lemmata 1.3.20
and 1.3.23 are proved.
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Lemma 1.4.12 Let (𝑋/𝑆,Δ) ∈ C 𝑙 and let 𝑓 : 𝑋 d 𝑌/𝑆 be a log divisorial
contraction or a log flip associated with a (𝐾𝑋 + Δ)-negative extremal ray
of NE(𝑋/𝑆). Then (𝑌, 𝑓∗Δ) ∈ C 𝑙 and the inequality 𝑎𝐸 (𝑋,Δ) ≤ 𝑎𝐸 (𝑌, 𝑓∗Δ)
of log discrepancies holds for any divisor 𝐸 over 𝑋 . Further 𝑎𝐸 (𝑋,Δ) <
𝑎𝐸 (𝑌, 𝑓∗Δ) if 𝑓 is not isomorphic at the generic point of the centre 𝑐𝑋 (𝐸) in
𝑋 . In particular if (𝑋,Δ) is klt, plt, dlt or lc, then so is (𝑌, 𝑓∗Δ). If (𝑋,Δ) is
terminal or canonical, and in addition Δ = 𝑓 −1

∗ 𝑓∗Δ, then so is (𝑌, 𝑓∗Δ).

We remark that the base of a log Mori fibre space is Q-factorial.

Lemma 1.4.13 Let 𝜋 : 𝑋 → 𝑌 be a log Mori fibre space. Then𝑌 is Q-factorial.
If Cl 𝑋/Pic 𝑋 is 𝑟-torsion for 𝑟 ∈ Z>0, then so is Cl𝑌/Pic𝑌 .

Proof Let 𝑈 be the smooth locus in 𝑌 and let 𝑈𝑋 = 𝜋−1 (𝑈). For an arbitrary
divisor 𝐷 on 𝑌 , there exists a divisor 𝐷𝑋 on 𝑋 such that the restriction 𝐷𝑋 |𝑈𝑋
equals the pull-back of 𝐷 |𝑈 . Suppose that 𝑟𝐷𝑋 is Cartier. Note that 𝑟𝐷𝑋 ≡𝑌 0
by 𝜌(𝑋/𝑌 ) = 1. By the exact sequence in Theorem 1.4.7 for 𝑆 = 𝑌 , the invertible
sheaf O𝑋 (𝑟𝐷𝑋 ) is isomorphic to the pull-back of some invertible sheaf L on
𝑌 . By the projection formula, L |𝑈 ' (𝜋 |𝑈𝑋 )∗O𝑋 (𝑟𝐷𝑋 ) |𝑈𝑋 = O𝑌 (𝑟𝐷) |𝑈 .
This implies that L ' O𝑌 (𝑟𝐷) since 𝑌 \ 𝑈 is of codimension at least two.
Thus 𝑟𝐷 is Cartier. �

The (𝐾𝑋 +Δ)-minimal model program over 𝑆, or the (𝐾𝑋 +Δ)/𝑆-MMP, for
(𝑋/𝑆,Δ) ∈ C 𝑙 is the algorithm which outputs (𝑌/𝑆, Γ) ∈ C 𝑙 with a birational
contraction map 𝑋 d 𝑌/𝑆 in the following manner.

1 If 𝐾𝑋 + Δ is relatively nef, then output (𝑋,Δ) ∈ C 𝑙 as a log minimal model.
2 If 𝐾𝑋 +Δ is not relatively nef, then there exists a (𝐾𝑋 +Δ)-negative extremal

ray of NE(𝑋/𝑆) and it defines an extremal contraction 𝜋 : 𝑋 → 𝑌/𝑆 by the
cone and contraction theorems.

3 If 𝜋 is a log Mori fibre space, then output (𝑋,Δ) ∈ C 𝑙 .
4 If 𝜋 is a log divisorial contraction, then (𝑌, 𝜋∗Δ) ∈ C 𝑙 and 𝜌(𝑌/𝑆) =

𝜌(𝑋/𝑆) − 1. Replace (𝑋,Δ) by (𝑌, 𝜋∗Δ) and go back to 1.
5 If 𝜋 is a log flipping contraction, then construct the log flip 𝑓 : 𝑋 d 𝑋+ of
𝜋, for which (𝑋+, 𝑓∗Δ) ∈ C 𝑙 and 𝜌(𝑋+/𝑆) = 𝜌(𝑋/𝑆). Replace (𝑋,Δ) by
(𝑋+, 𝑓∗Δ) and go back to 1.

Remark 1.4.14 Nakayama [368] formulated the minimal model program for
klt pairs in the analytic category, including the Kawamata–Viehweg vanishing,
the base-point free theorem and the cone and contraction theorems.

The full form of termination of log flips is known up to dimension three
[425]. The log abundance conjecture will be discussed in the last section.
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Conjecture 1.4.15 (Termination of log flips) Let (𝑋/𝑆,Δ) be a Q-factorial
lc pair projective over a variety. Then there exists no infinite sequence 𝑋 =

𝑋0 d 𝑋1 d · · · of elementary log flips 𝑋𝑖 → 𝑌𝑖 ← 𝑋𝑖+1 associated with an
(𝐾𝑋𝑖 + Δ𝑖)-negative extremal ray of NE(𝑋𝑖/𝑆) for the strict transform Δ𝑖 of Δ.

The following is the same as Proposition 1.3.27.

Proposition 1.4.16 Let (𝑋/𝑆,Δ) be a Q-factorial lc pair projective over a
variety. If 𝐾𝑋 + Δ is relatively pseudo-effective, then the output by the (𝐾𝑋 +
Δ)/𝑆-MMP is always a log minimal model. If 𝐾𝑋 + Δ is not relatively pseudo-
effective, then the output is always a log Mori fibre space.

We shall supplement the notions of plt, dlt and lc singularities. Whereas lc
pairs form the maximal class in which the MMP works, the variety of an lc pair
is not even Cohen–Macaulay in general.

Example 1.4.17 Let 𝑆 be an abelian surface and let L be an ample invertible
sheaf on 𝑆. Take the line bundle 𝐵 = Spec𝑆

⊕
𝑖∈N L ⊗𝑖 → 𝑆. The natural

projection 𝜋 : 𝐵 → 𝑋 to the affine cone 𝑋 = Spec
⊕

𝑖∈N 𝐻
0 (L ⊗𝑖) of 𝑆

is the contraction which contracts a section 𝐸 ' 𝑆 of 𝐵/𝑆 to the vertex 𝑜.
One has 𝐾𝐵 + 𝐸 ∼ 0 since (𝐾𝐵 + 𝐸) |𝐸 = 𝐾𝐸 ∼ 0 by adjunction. Hence
𝐾𝑋 = 𝜋∗ (𝐾𝐵 + 𝐸) ∼ 0 and 𝐾𝐵 + 𝐸 = 𝜋∗𝐾𝑋 . In particular, 𝑋 is lc. The spectral
sequence gives an isomorphism 𝑅1𝜋∗O𝐵 ' 𝐻1 (O𝐵) = 𝐻1 (O𝑆) ' C2.

We shall prove that 𝑋 is not Cohen–Macaulay. Embed 𝑋 into a projec-
tive variety 𝑋̄ which is smooth outside 𝑜 and extend 𝜋 to the contraction
𝜋̄ : 𝐵̄ → 𝑋̄ isomorphic outside 𝑜. If 𝑋 were Cohen–Macaulay, then by the
duality and Serre vanishing, 𝐻2 (O𝑋̄ (−𝐴̄)) = 𝐻1 (𝜔𝑋̄ ⊗O𝑋̄ ( 𝐴̄))∨ = 0 for a suf-
ficiently ample Cartier divisor 𝐴̄ on 𝑋̄ . On the other hand, 𝐻1 (O𝐵̄ (−𝜋̄∗ 𝐴̄)) =
𝐻2 (O𝐵̄ (𝐾𝐵̄+𝜋̄∗ 𝐴̄))∨ = 0 by Kawamata–Viehweg vanishing. Hence the spectral
sequence 𝐻 𝑝 (𝑅𝑞 𝜋̄∗O𝐵̄ (−𝜋̄∗ 𝐴̄)) ⇒ 𝐻 𝑝+𝑞 (O𝐵̄ (−𝜋̄∗ 𝐴̄)) would give 𝑅1𝜋∗O𝐵 '
𝑅1𝜋̄∗O𝐵̄ (−𝜋̄∗ 𝐴̄) = 0, which is a contradiction.

Dlt pairs form a class suited for inductive arguments on dimension. The
variety of a dlt pair has rational singularities and it is Cohen–Macaulay as
below. On the other hand, the definition of a dlt singularity is subtle. It is not
an analytically local property as evidenced by Example 1.4.21.

Definition 1.4.18 Let 𝑋 be a normal variety in characteristic zero. We say that
𝑋 has rational singularities if 𝑅𝑖𝜇∗O𝑋 ′ = 0 for all 𝑖 ≥ 1 for every resolution
𝜇 : 𝑋 ′ → 𝑋 . By Theorem 1.4.19, it is equivalent to the existence of some
resolution 𝜇 having the required property.
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Theorem 1.4.19 ([251, p.50 proposition]) A resolution 𝜇 : 𝑋 ′ → 𝑋 of a
normal variety 𝑋 satisfies 𝑅𝑖𝜇∗O𝑋 ′ = 0 for all 𝑖 ≥ 1 if and only if 𝑋 is
Cohen–Macaulay with 𝜔𝑋 = 𝜇∗𝜔𝑋 ′ .

Theorem 1.4.20 ([249, theorem 1.3.6]) If (𝑋,Δ) is a dlt pair, then 𝑋 has
rational singularities and in particular it is Cohen–Macaulay.

Example 1.4.21 The pair (A2, 𝐷) with the sum 𝐷 of the two axes given by
𝑥1𝑥2 is dlt but (A2, 𝐶) with the nodal curve 𝐶 given by 𝑥1𝑥2 + 𝑥3

1 + 𝑥
3
2 is only

lc. They are analytically isomorphic at origin. See also Example 2.1.2.

Szabó’s result characterises a dlt singularity in an alternative way.

Theorem 1.4.22 (Szabó [437]) A pair (𝑋,Δ) is dlt if and only if there exists
a smooth dense open subset𝑈 of 𝑋 such that Δ|𝑈 is reduced and snc and such
that 𝑎𝐸 (𝑋,Δ) > 0 for any divisor 𝐸 over 𝑋 with 𝑐𝑋 (𝐸) ⊂ 𝑋 \ 𝑈. When 𝑋
is quasi-projective, this implies the existence of an effective R-divisor Δ′ such
that (𝑋, (1− 𝜀)Δ + 𝜀Δ′) is klt for any sufficiently small positive real number 𝜀.

By the connectedness lemma of Shokurov and Kollár, a dlt pair (𝑋,Δ) is plt
if and only if all the connected components of bΔc are irreducible.

Theorem 1.4.23 (Connectedness lemma) Let (𝑋,Δ) be an algebraic or ana-
lytic pair and let 𝜋 : 𝑋 → 𝑌 be a proper morphism to a variety with connected
fibres such that −(𝐾𝑋 + Δ) is 𝜋-nef and 𝜋-big. Let 𝜇 : 𝑋 ′ → 𝑋 be a log reso-
lution of (𝑋,Δ) and write 𝐾𝑋 ′ + 𝑁 = 𝜇∗ (𝐾𝑋 + Δ) + 𝑃 with effective R-divisors
𝑃 and 𝑁 without common components such that 𝜇∗𝑃 = 0 and 𝜇∗𝑁 = Δ. Then
the natural map O𝑌 → (𝜋 ◦ 𝜇)∗O b𝑁 c is surjective.

Proof This is an application of Kawamata–Viehweg vanishing to the klt pair
(𝑋 ′, 𝐵) for 𝐵 = (𝑁 − 𝑃) − b𝑁 − 𝑃c with 𝜋′ = 𝜋 ◦ 𝜇 : 𝑋 ′ → 𝑌 . The vanishing
also holds in the analytic category as noted in Remark 1.4.14. Since d𝑃e−b𝑁c−
(𝐾𝑋 ′ + 𝐵) = −𝜇∗ (𝐾𝑋 + Δ) is 𝜋′-nef and 𝜋′-big, it follows from Theorem 1.4.5
that 𝑅1𝜋′∗O𝑋 ′ (d𝑃e − b𝑁c) = 0. Thus one has the surjection

𝜋′∗O𝑋 ′ (d𝑃e) � 𝜋′∗O b𝑁 c (d𝑃e | b𝑁 c).

The left-hand side equals O𝑌 since 𝜇∗O𝑋 ′ (d𝑃e) = O𝑋 . Hence the above map
factors through the natural map O𝑌 → 𝜋′∗O b𝑁 c , which must be surjective. �

Finally we discuss formulae of adjunction type. Let (𝑋, 𝑆 + 𝐵) be a pair
such that 𝑆 is reduced and has no common components with 𝐵. Take a log
resolution 𝜇 : 𝑋 ′→ 𝑋 of (𝑋, 𝑆 + 𝐵) and write 𝐾𝑋 ′ + 𝑆′ + 𝐵′ = 𝜇∗ (𝐾𝑋 + 𝑆 + 𝐵)
with the strict transform 𝑆′ of 𝑆 and an R-divisor 𝐵′ such that 𝜇∗𝐵′ = 𝐵.
Choose it so that 𝑆′ → 𝑆 factors through the normalisation 𝜈 : 𝑆𝜈 → 𝑆 with

https://doi.org/10.1017/9781108933988.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933988.002


1.4 Logarithmic and Relative Extensions 35

a contraction 𝜇𝑆 : 𝑆′ → 𝑆𝜈 . We define the R-divisor 𝐵𝑆𝜈 = 𝜇𝑆∗ (𝐵′ |𝑆′) on 𝑆𝜈 .
Then𝐾𝑆𝜈 +𝐵𝑆𝜈 is an R-Cartier R-divisor such that𝐾𝑆′+𝐵′ |𝑆′ = 𝜇∗𝑆 (𝐾𝑆𝜈 +𝐵𝑆𝜈 ).
If 𝑆 is Cartier and normal and 𝐵 is zero, then 𝐵𝑆𝜈 is zero by adjunction.

Definition 1.4.24 ([424, section 3]) The R-divisor 𝐵𝑆𝜈 = 𝜇𝑆∗ (𝐵′ |𝑆′) is called
the different on 𝑆𝜈 of the pair (𝑋, 𝑆 + 𝐵). The different 𝐵𝑆𝜈 is effective and
independent of the choice of the log resolution 𝜇. It satisfies the adjunction
𝜈∗ ((𝐾𝑋 + 𝑆 + 𝐵) |𝑆) = 𝐾𝑆𝜈 + 𝐵𝑆𝜈 via the pull-back Pic 𝑋 ⊗ R→ Pic 𝑆𝜈 ⊗ R.

Example 1.4.25 Consider the surface 𝑋 in A3 given by 𝑥2
1 − 𝑥2𝑥3 and the 𝑥3-

axis 𝐷 in Example 1.2.1. The blow-up 𝜇 : 𝑋 ′→ 𝑋 at origin 𝑜 is a log resolution
of (𝑋, 𝐷) with 𝐾𝑋 ′ + 𝐷 ′ + (1/2)𝐸 = 𝜇∗ (𝐾𝑋 + 𝐷) for the strict transform 𝐷 ′

of 𝐷 and the exceptional curve 𝐸 . Hence 𝐾𝐷 + (1/2)𝑜 = (𝐾𝑋 + 𝐷) |𝐷 , that is,
(1/2)𝑜 is the different on 𝐷 of the pair (𝑋, 𝐷). One can regard 𝑋 as the quotient
A2/Z2 by the morphism A2 → 𝑋 given by (𝑥1, 𝑥2, 𝑥3) = (𝑦1𝑦2, 𝑦

2
1, 𝑦

2
2) for the

coordinates 𝑦1, 𝑦2 of A2. In general for the cyclic quotient 𝑋 = A2/Z𝑟 (1, 𝑤)
in Definition 2.2.10 with 𝑤 coprime to 𝑟, each axis 𝑙 of 𝑋 satisfies the formula
𝐾𝑙 + (1 − 𝑟−1)𝑜 = (𝐾𝑋 + 𝑙) |𝑙 .

The inversion of adjunction compares the singularities on 𝑋 with those on
𝑆𝜈 . The only-if part of each item in the next theorem is evident. The if part of
the first item follows from the connectedness lemma.

Theorem 1.4.26 (Inversion of adjunction) Let (𝑋, 𝑆 + 𝐵) be an algebraic
or analytic pair such that 𝑆 is reduced and has no common components with
𝐵. Let 𝑆𝜈 be the normalisation of 𝑆 and let 𝐵𝑆𝜈 denote the different on 𝑆𝜈 of
(𝑋, 𝑆 + 𝐵).

(i) The pair (𝑋, 𝑆+𝐵) is plt about 𝑆 if and only if (𝑆𝜈 , 𝐵𝑆𝜈 ) is klt. In this case,
𝑆 is normal.

(ii) ([225]) The pair (𝑋, 𝑆 + 𝐵) is lc about 𝑆 if and only if (𝑆𝜈 , 𝐵𝑆𝜈 ) is lc.

There is a generalisation of the adjunction. Let (𝑋,Δ) be a pair. A non-klt
centre of (𝑋,Δ) means the centre 𝑐𝑋 (𝐸) in 𝑋 of a divisor 𝐸 over 𝑋 such that
𝑎𝐸 (𝑋,Δ) ≤ 0. The union of all non-klt centres is called the non-klt locus of
(𝑋,Δ). It is the complement of the maximal open subset𝑈 of 𝑋 where (𝑈,Δ|𝑈 )
is klt. If (𝑋,Δ) is lc, then a non-klt centre of (𝑋,Δ) is often called an lc centre.
An lc centre that is minimal with respect to inclusion is called a minimal lc
centre. A minimal lc centre exists and it is normal [129, theorem 9.1].

Theorem 1.4.27 (Subadjunction formula [133, theorem 4.1], [244]) Let
(𝑋,Δ) be an lc pair such that 𝑋 is projective and let 𝑍 be a minimal lc cen-
tre of (𝑋,Δ). Then 𝑍 admits a klt pair (𝑍,Δ𝑍 ) which satisfies the adjunction
(𝐾𝑋 + Δ) |𝑍 ∼R 𝐾𝑍 + Δ𝑍 .
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For fibrations, we state Ambro’s adjunction formula. The extension to the
case of R-divisors is in [133, theorem 3.1].

Theorem 1.4.28 (Ambro [13, theorem 0.2]) Let (𝑋,Δ) be a klt pair such
that 𝑋 is projective and let 𝜋 : 𝑋 → 𝑆 be a contraction to a normal projective
variety with 𝐾𝑋 + Δ ∼R,𝑆 0. Then 𝑆 admits a klt pair (𝑆,Δ𝑆) which satisfies
the adjunction 𝐾𝑋 + Δ ∼R 𝜋

∗ (𝐾𝑆 + Δ𝑆) via 𝜋∗ : Pic 𝑆 ⊗ R→ Pic 𝑋 ⊗ R.

1.5 Existence of Flips

The existence of flips [48], [172] by Hacon and McKernan with Birkar and
Cascini is a landmark in the minimal model theory. This section is an introduc-
tion to their work. The books [94] and [169] treat it.

Definition 1.5.1 Let 𝑓 : 𝑋 d 𝑌 be a birational contraction map defined in
Definition 1.3.15. Let 𝐷 be an R-Cartier R-divisor on 𝑋 such that 𝐷𝑌 = 𝑓∗𝐷

is also R-Cartier. We say that 𝑓 is non-positive with respect to 𝐷 (or 𝐷-non-
positive) if ord𝐸 𝐷 ≥ ord𝐸 𝐷𝑌 for all divisors 𝐸 over 𝑋 . We say that 𝑓 is
negative with respect to 𝐷 (or 𝐷-negative) if it is 𝐷-non-positive and further
ord𝐸 𝐷 > ord𝐸 𝐷𝑌 for every prime divisor 𝐸 on 𝑋 exceptional over 𝑌 .

We say that 𝑓 is crepant with respect to 𝐷 if ord𝐸 𝐷 = ord𝐸 𝐷𝑌 for all
divisors 𝐸 over 𝑋 . This is equivalent to the equality 𝑝∗𝐷 = 𝑞∗𝐷𝑌 on a common
resolution𝑊 with 𝑝 : 𝑊 → 𝑋 and 𝑞 : 𝑊 → 𝑌 . We simply say that 𝑓 is crepant
if it is crepant with respect to the canonical divisor 𝐾𝑋 .

We define models of a pair over a fixed variety 𝑆.

Definition 1.5.2 Let 𝑋 be a normal variety which is projective over a variety
𝑆. Let 𝐷 be an R-Cartier R-divisor on 𝑋 . Let 𝑔 : 𝑋 d 𝑍/𝑆 be a rational map
to a normal variety projective over 𝑆 which is resolved as 𝑔 = 𝑞 ◦ 𝑝−1 by a
resolution 𝑝 : 𝑊 → 𝑋 and a contraction 𝑞 : 𝑊 → 𝑍 . We call 𝑔 the ample model
of 𝐷 over 𝑆 if 𝑝∗𝐷 ∼R,𝑆 𝑞

∗𝐴 + 𝐸 with a relatively ample R-divisor 𝐴 on 𝑍 and
an effective R-divisor 𝐸 on𝑊 such that 𝐸 |𝑈𝑊 ≤ 𝐵 for any open subset𝑈 of 𝑆
and any effective R-divisor 𝐵 ∼R,𝑈 𝑝∗𝐷 |𝑈𝑊 on𝑈𝑊 = 𝑊 ×𝑆 𝑈. The definition
is independent of the choice of the resolution𝑊 .

Lemma 1.5.3 The ample model is unique up to isomorphism if it exists.

Proof Keep the notation in Definition 1.5.2. Suppose that another ample
model 𝑋 d 𝑍 ′ of 𝐷 is realised with 𝑞′ : 𝑊 → 𝑍 ′ and 𝑝∗𝐷 ∼R,𝑆 (𝑞′)∗𝐴′ + 𝐸 ′.
If 𝐸 = 𝐸 ′, then 𝑞∗𝐴 ∼R,𝑆 (𝑞′)∗𝐴′ and a relative curve in 𝑊/𝑆 is contracted
by 𝑞 if and only if it is contracted by 𝑞′. This means the isomorphism 𝑞 ' 𝑞′
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by Lemma 1.1.1. To see the equality 𝐸 = 𝐸 ′, we may assume that 𝑆 is quasi-
projective. Since 𝐴′ is relatively ample, there exists an effective R-divisor
𝐵′ ∼R,𝑆 (𝑞′)∗𝐴′ which has no common components with 𝐸 . It follows from
the property of 𝐸 that 𝐸 ≤ 𝐵′ + 𝐸 ′ and hence 𝐸 ≤ 𝐸 ′. By symmetry, 𝐸 ′ ≤ 𝐸
and thus 𝐸 = 𝐸 ′. �

We have the following characterisation of the ample model when it is bira-
tional. In particular, the log flip 𝑋 → 𝑌 ← 𝑋+ with respect to (𝑋,Δ) is the
ample model of 𝐾𝑋 + Δ over 𝑌 .

Proposition 1.5.4 Notation as in Definition 1.5.2. Suppose that 𝑔 is birational.
Then 𝑔 is the ample model of 𝐷 if and only if 𝑔 is a 𝐷-non-positive birational
contraction map such that 𝑔∗𝐷 is relatively ample.

Proof The if part is easy. By assumption, one can write 𝑝∗𝐷 = 𝑞∗ (𝑔∗𝐷) + 𝐸
with relatively ample 𝑔∗𝐷 and 𝑞-exceptional 𝐸 ≥ 0. Suppose that 𝐵 ∼R,𝑆 𝑝

∗𝐷

is effective. Let 𝐵′ = 𝐵 − 𝑞−1
∗ 𝑞∗𝐵 be the 𝑞-exceptional part of 𝐵, for which

𝐸 − 𝐵′ ∼R,𝑍 𝐵 − 𝐵′ ≥ 0. Then 𝐸 ≤ 𝐵′ ≤ 𝐵 by the negativity lemma, showing
that 𝑔 is the ample model.

Conversely suppose that 𝑔 is the ample model with 𝑝∗𝐷 ∼R,𝑆 𝑞
∗𝐴 + 𝐸 as

in Definition 1.5.2. Taking 𝑊 suitably, we may assume that the 𝑞-exceptional
locus 𝑄 equals the support of an effective Q-divisor 𝐹 such that 𝑞∗𝐴 − 𝐹 is
ample over 𝑆. Then 𝐻 = 𝑞∗𝐴 − 𝐹 + 𝜀𝐸 is still ample over 𝑆 for small positive
𝜀. Since 𝑝∗𝐷 ∼R,𝑆 𝐻 + 𝐹 + (1 − 𝜀)𝐸 , the property of the ample model shows
that 𝐸 ≤ 𝐹 + (1 − 𝜀)𝐸 . Hence 𝐸 is supported in 𝑄.

Let 𝑃 be a 𝑝-exceptional prime divisor. For a general curve𝐶 in 𝑃 contracted
by 𝑝, one has (𝑞∗𝐴 · 𝐶) + (𝐸 · 𝐶) = 0 and (𝑞∗𝐴 · 𝐶) ≥ 0. If (𝐸 · 𝐶) ≥ 0, then
(𝑞∗𝐴 · 𝐶) = 0 and 𝑞 contracts 𝐶. If (𝐸 · 𝐶) < 0, then 𝑃 appears in 𝐸 . In both
cases, 𝑃 is 𝑞-exceptional. It follows that 𝑔 is a birational contraction map and
𝑔∗𝐷 ∼R,𝑆 𝑞∗ (𝑞∗𝐴 + 𝐸) = 𝐴 is relatively ample. Then 𝑝∗𝐷 = 𝑞∗ (𝑔∗𝐷) + 𝐸 and
in particular 𝑔 is 𝐷-non-positive. �

Definition 1.5.5 Let (𝑋,Δ) be an lc pair projective over a variety 𝑆. Let
𝑓 : 𝑋 d 𝑌/𝑆 be a birational contraction map over 𝑆 to a normal variety 𝑌
projective over 𝑆. We call 𝑓 (or 𝑌 ) a log minimal model of (𝑋/𝑆,Δ) if 𝑓 is
(𝐾𝑋 +Δ)-negative, 𝐾𝑌 + 𝑓∗Δ is relatively nef and𝑌 is Q-factorial. If the identity
𝑋 → 𝑋/𝑆 is a log minimal model, then (𝑋/𝑆,Δ) is a log minimal model in
the sense in the preceding section. We call 𝑓 (or 𝑌 ) the log canonical model of
(𝑋/𝑆,Δ) if 𝑓 is the ample model of 𝐾𝑋 + Δ over 𝑆. When 𝑋 is terminal and Δ

is zero, a log minimal model and the log canonical model of 𝑋/𝑆 are called a
minimal model and the canonical model of 𝑋/𝑆.
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Log minimal models are isomorphic in codimension one and crepant with
respect to the pairs.

Proposition 1.5.6 Let (𝑋/𝑆,Δ) be an lc pair projective over a variety. Let
𝑓 : 𝑋 d 𝑋1/𝑆 be a (𝐾𝑋 + Δ)-negative birational contraction map over 𝑆 to
a normal variety projective over 𝑆, which makes an lc pair (𝑋1/𝑆,Δ1) with
Δ1 = 𝑓∗Δ. Then every log minimal model of (𝑋/𝑆,Δ) is a log minimal model
of (𝑋1/𝑆,Δ1) and vice versa.

Proof The vice-versa part is obvious. We shall prove the former part. Let
(𝑋2/𝑆,Δ2) be a log minimal model of (𝑋/𝑆,Δ). It suffices to show that 𝑔 : 𝑋1 d

𝑋2 is a (𝐾𝑋1 + Δ1)-negative birational contraction map.
The idea has appeared in Example 1.3.10. Take a common log resolution𝑌 of
(𝑋,Δ), (𝑋1,Δ1) and (𝑋2,Δ2) with 𝜇 : 𝑌 → 𝑋 and 𝜇𝑖 : 𝑌 → 𝑋𝑖 . Let 𝑇𝑖 denote
the sum of 𝜇𝑖-exceptional prime divisors and let 𝑇 denote the common part of
𝑇1 and 𝑇2. Write 𝜇∗ (𝐾𝑋 + Δ) = 𝜇∗𝑖 (𝐾𝑋𝑖 + Δ𝑖) + 𝐸𝑖 + 𝐹𝑖 with R-divisors 𝐸𝑖 and
𝐹𝑖 supported in 𝑇 and 𝑇𝑖 −𝑇 respectively. Since 𝑋 d 𝑋𝑖 is (𝐾𝑋 +Δ)-negative,
𝐸𝑖 and 𝐹𝑖 are effective and the support of 𝐹𝑖 equals 𝑇𝑖 − 𝑇 .

By the negativity lemma, the 𝜇1-exceptional R-divisor

𝐸1 − 𝐸2 + 𝐹1 = −𝜇∗1 (𝐾𝑋1 + Δ1) + 𝜇∗2 (𝐾𝑋2 + Δ2) + 𝐹2

is negative, that is, 𝐸1 ≤ 𝐸2 and 𝐹1 ≤ 0. In particular 𝐹1 = 0 and thus 𝑇1 = 𝑇 ≤
𝑇2, which means that 𝑔 is a birational contraction map. The (𝐾𝑋1+Δ1)-negativity
of 𝑔 follows from the expression 𝜇∗1 (𝐾𝑋1 +Δ1) = 𝜇∗2 (𝐾𝑋2 +Δ2) + (𝐸2−𝐸1) +𝐹2
where 𝐸2 − 𝐸1 ≥ 0. �

Corollary 1.5.7 Let (𝑋/𝑆,Δ) be an lc pair projective over a variety. Let
(𝑋𝑖/𝑆,Δ𝑖) for 𝑖 = 1, 2 be log minimal models of (𝑋/𝑆,Δ). Then 𝑋1 d 𝑋2 is
small and crepant with respect to 𝐾𝑋1 + Δ1.

Proof By Proposition 1.5.6, (𝑋2/𝑆,Δ2) is a log minimal model of (𝑋1/𝑆,Δ1)
and vice versa. �

Let (𝑋/𝑆,Δ) be a Q-factorial lc pair projective over a variety. Assume that
𝐾𝑋 +Δ is relatively pseudo-effective. Then every output (𝑌/𝑆, Γ) of the (𝐾𝑋 +
Δ)/𝑆-MMP is a log minimal model of (𝑋/𝑆,Δ). If the log abundance holds
for (𝑌/𝑆, Γ), that is, 𝐾𝑌 + Γ is relatively semi-ample, then by Lemma 1.2.13, 𝑌
admits a contraction 𝜑 : 𝑌 → 𝑍/𝑆 for which 𝐾𝑌 + Γ ∼R 𝜑∗𝐴 with a relatively
ample R-divisor 𝐴 on 𝑍 . The rational map 𝑋 d 𝑍 is the ample model of
𝐾𝑋 + Δ over 𝑆.

Birkar, Cascini, Hacon and McKernan proved the finiteness of models si-
multaneously with the existence of log flips for klt pairs. In Definition 1.5.5, we
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call 𝑓 a weak log canonical model of (𝑋/𝑆,Δ) if 𝑓 is (𝐾𝑋 + Δ)-non-positive
and 𝐾𝑌 + 𝑓∗Δ is relatively nef. Let 𝑉Q be a finite dimensional rational vector
space and let 𝑉 = 𝑉Q ⊗Q R. A rational polytope in 𝑉 is the convex hull of a
finite number of points in 𝑉Q.

Theorem 1.5.8 ([48, corollary 1.1.5, theorem E]) Let 𝑋 be a normal variety
projective over a quasi-projective variety 𝑆. Let𝑉 = 𝑉Q⊗QR be the extension of
a finite dimensional vector subspace𝑉Q of the rational vector space 𝑍1 (𝑋) ⊗Q
of Q-divisors on 𝑋 . Let 𝐶 be a rational polytope in 𝑉 such that for all Δ ∈ 𝐶,
(𝑋,Δ) is klt and 𝐴Δ ≤ Δ for some relatively ample Q-divisor 𝐴Δ. Define the
set E of Δ ∈ 𝐶 such that 𝐾𝑋 + Δ is relatively pseudo-effective.

(i) There exist finitely many rational maps 𝑔𝑖 : 𝑋 d 𝑌𝑖/𝑆 such that

E =
⊔
𝑖

A𝑖 , A𝑖 = {Δ ∈ E | 𝑔𝑖 the ample model of 𝐾𝑋 + Δ over 𝑆}.

Every A𝑖 has the closure ¯A𝑖 which is a finite union of rational polytopes.
Moreover if ¯A𝑖 ∩A 𝑗 ≠ ∅, then there exists a contraction 𝑔 𝑗𝑖 : 𝑌𝑖 → 𝑌 𝑗 such
that 𝑔 𝑗 = 𝑔 𝑗𝑖 ◦ 𝑔𝑖 .

(ii) There exist finitely many birational maps 𝑓𝑖 : 𝑋 d 𝑊𝑖/𝑆 such that

E =
⋃
𝑖

B𝑖 , B𝑖 = {Δ ∈ E | 𝑓𝑖 a weak lc model of (𝑋/𝑆,Δ)}

and such that every weak lc model of (𝑋/𝑆,Δ) with Δ ∈ E is isomorphic to
some 𝑓𝑖 . Every B𝑖 is a rational polytope. For any B𝑖 , there exist some A 𝑗

and a contraction ℎ 𝑗𝑖 : 𝑊𝑖 → 𝑌 𝑗 such that B𝑖 ⊂ ¯A 𝑗 and 𝑔 𝑗 = ℎ 𝑗𝑖 ◦ 𝑓𝑖 .

Remark 1.5.9 In the theorem with the quasi-projective condition relaxed,

P = {Δ ∈ 𝑉 | (𝑋,Δ) lc, 𝐾𝑋 + Δ relatively nef}

is also a rational polytope and called Shokurov’s polytope [425]. The proof in
[44, proposition 3.2], [131, theorem 4.7.2] uses the boundedness of length of
an extremal ray in Theorem 1.4.10.

By the finiteness of models, one can run the MMP with scaling practically.

Definition 1.5.10 Let (𝑋,Δ) be a Q-factorial klt pair projective over a variety
𝑆. Fix a relatively big R-divisor 𝐴 such that (𝑋,Δ + 𝐴) is klt and such that
𝐾𝑋 + Δ + 𝐴 is relatively nef. The (𝐾𝑋 + Δ)-minimal model program over 𝑆
with scaling of 𝐴 is a (𝐾𝑋 +Δ)/𝑆-MMP (𝑋,Δ) = (𝑋0,Δ0) d (𝑋1,Δ1) d · · ·
running in the following manner, where 𝐴0 = 𝐴 and 𝑡−1 = 1.
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1 If 𝐾𝑋𝑖 + Δ𝑖 is relatively nef, then output (𝑋𝑖/𝑆,Δ𝑖).
2 If 𝐾𝑋𝑖 + Δ𝑖 is not relatively nef, then define the nef threshold 𝑡𝑖 ∈ R>0 as

the least real number such that 𝐾𝑋𝑖 + Δ𝑖 + 𝑡𝑖𝐴𝑖 is relatively nef. It satisfies
𝑡𝑖 ≤ 𝑡𝑖−1. By Lemma 1.5.11, there exists a (𝐾𝑋𝑖 + Δ𝑖)-negative extremal
ray R≥0 [𝐶𝑖] of NE(𝑋𝑖/𝑆) such that ((𝐾𝑋𝑖 + Δ𝑖 + 𝑡𝑖𝐴𝑖) · 𝐶𝑖) = 0. Take the
extremal contraction 𝜋𝑖 : 𝑋𝑖 → 𝑌𝑖/𝑆 associated with this ray.

3 If 𝜋𝑖 is a log Mori fibre space, then output (𝑋𝑖/𝑆,Δ𝑖).
4 If 𝜋𝑖 is a log divisorial contraction, then take 𝑋𝑖+1 = 𝑌𝑖 . If 𝜋𝑖 is a log flipping

contraction, then construct the log flip 𝑋𝑖+1 → 𝑌𝑖 of 𝜋𝑖 by Theorem 1.4.11.
In each case, set 𝑓𝑖 : 𝑋𝑖 d 𝑋𝑖+1, Δ𝑖+1 = 𝑓𝑖∗Δ𝑖 and 𝐴𝑖+1 = 𝑓𝑖∗𝐴𝑖 . Then 𝑓𝑖 is
crepant with respect to 𝐾𝑋𝑖 + Δ𝑖 + 𝑡𝑖𝐴𝑖 and hence 𝐾𝑋𝑖+1 + Δ𝑖+1 + 𝑡𝑖𝐴𝑖+1 is
relatively nef. Replace (𝑋𝑖 ,Δ𝑖) by (𝑋𝑖+1,Δ𝑖+1) and go back to 1.

Lemma 1.5.11 Let (𝑋/𝑆,Δ) be a klt pair projective over a variety. Let 𝐴 be
a relatively big R-divisor such that (𝑋,Δ + 𝐴) is klt and such that 𝐾𝑋 + Δ + 𝐴
is relatively nef but 𝐾𝑋 + Δ + 𝑡𝐴 is not relatively nef for any 𝑡 < 1. Then
there exists a (𝐾𝑋 + Δ)-negative extremal ray R≥0 [𝐶] of NE(𝑋/𝑆) such that
((𝐾𝑋 + Δ + 𝐴) · 𝐶) = 0.

Proof We shall verify the finiteness of the number of (𝐾𝑋 +Δ+𝐴/2)-negative
extremal rays of NE(𝑋/𝑆), which implies the lemma. We may assume that 𝑆 is
quasi-projective. By Kodaira’s lemma, one can write 𝐴 = 𝐻+𝐸 with a relatively
ample Q-divisor𝐻 and an effective R-divisor 𝐸 . Take𝐷 = Δ+(1−𝜀)𝐴/2+𝜀𝐸/2
with small positive 𝜀. Then (𝑋, 𝐷) is klt and 𝐾𝑋 +Δ + 𝐴/2 = 𝐾𝑋 + 𝐷 + 𝜀𝐻/2.
Thus the finiteness follows from the cone theorem. �

Remark 1.5.12 The lemma actually holds for an lc pair (𝑋/𝑆,Δ) and an
R-divisor 𝐴 such that (𝑋,Δ + 𝐴) is lc. This is an elementary consequence [43,
lemma 3.1] of Theorem 1.4.10 and Remark 1.5.9. Hence the MMP with scaling
may be formulated for lc pairs without relative bigness of 𝐴.

The advantage of the MMP in Definition 1.5.10 is that each step 𝑋𝑖 is a
weak lc model of (𝑋/𝑆,Δ + 𝑡𝑖𝐴). This yields the following termination. As a
special case, the MMP with scaling functions when 𝑋 → 𝑆 is generically finite
because all divisors are relatively big.

Corollary 1.5.13 Let (𝑋/𝑆,Δ) be a Q-factorial klt pair projective over a
variety. If Δ is relatively big or 𝐾𝑋 + Δ is not relatively pseudo-effective, then
the (𝐾𝑋 + Δ)-MMP over 𝑆 with scaling terminates.

Proof Keep the notation in Definition 1.5.10. When Δ is relatively big, let
𝜀 = 0. When 𝐾𝑋 +Δ is not relatively pseudo-effective, choose a rational number
0 < 𝜀 ≤ 1 such that 𝐾𝑋 + Δ + 𝜀𝐴 is not relatively pseudo-effective. Take the
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closed interval 𝐼 = [𝜀, 1]. Then Δ + 𝑡𝐴 is relatively big for all 𝑡 ∈ 𝐼, and locally
on 𝑆, each step 𝑋𝑖 of the (𝐾𝑋 + Δ)/𝑆-MMP with scaling of 𝐴 is a weak lc
model of (𝑋/𝑆,Δ+ 𝑡𝑖𝐴) with 𝑡𝑖 ∈ 𝐼. By Theorem 1.5.8(ii), the number of weak
lc models of (𝑋/𝑆,Δ + 𝑡𝐴) with 𝑡 ∈ 𝐼 is finite and thus so is the number of
models 𝑋𝑖 . Hence the MMP must terminate. Note that 𝑋𝑖 d 𝑋 𝑗 with 𝑖 < 𝑗 is
never an isomorphism by Lemma 1.4.12. �

Corollary 1.5.14 Let (𝑋/𝑆,Δ) be a Q-factorial klt pair projective over a
variety. If 𝐾𝑋 +Δ is relatively big, then the (𝐾𝑋 +Δ)-MMP over 𝑆 with scaling
terminates with a log minimal model (𝑌/𝑆, Γ) such that 𝐾𝑌 + Γ is relatively
semi-ample.

Proof We may assume that 𝑆 is quasi-projective. Then (𝑋,Δ + 𝐵) is klt for
a general effective R-divisor 𝐵 ∼R,𝑆 𝜀(𝐾𝑋 + Δ) with small positive 𝜀. Every
(𝐾𝑋 +Δ)/𝑆-MMP with scaling of 𝐴 is a (𝐾𝑋 +Δ+ 𝐵)/𝑆-MMP with scaling of
(1+𝜀)𝐴. By Corollary 1.5.13, it terminates with a log minimal model (𝑌/𝑆, Γ)
with relatively big 𝐾𝑌 + Γ, which is relatively semi-ample by the base-point
free theorem. �

Combining this with the work of Fujino and Mori [134], one obtains the
finite generation of the log canonical ring.

Definition 1.5.15 The canonical ring of a normal variety 𝑋 is the graded ring⊕
𝑖∈N 𝐻

0 (O𝑋 (𝑖𝐾𝑋 )). The log canonical ring of a pair (𝑋,Δ) is the graded
ring

⊕
𝑖∈N 𝐻

0 (O𝑋 (b𝑖(𝐾𝑋 + Δ)c)).

Theorem 1.5.16 Let (𝑋,Δ) be a klt pair such that 𝑋 is complete and Δ is a
Q-divisor. Then the log canonical ring of (𝑋,Δ) is finitely generated.

The next proposition with 𝐼 = ∅ shows the existence of a Q-factorialisation
of 𝑋 which admits a klt pair (𝑋,Δ). A Q-factorialisation of a normal variety
means a small contraction from a Q-factorial normal variety to it.

Proposition 1.5.17 ([48, corollary 1.4.3]) Let (𝑋,Δ) be a klt pair and let 𝐼
be an arbitrary subset of divisors 𝐸 exceptional over 𝑋 with 𝑎𝐸 (𝑋,Δ) ≤ 1.
Then there exists a birational contraction 𝜋 : 𝑌 → 𝑋 from a Q-factorial normal
variety such that 𝐼 coincides with the set of 𝜋-exceptional prime divisors on 𝑌 .

Proof Take a log resolution 𝜇 : 𝑋 ′ → 𝑋 of (𝑋,Δ) on which every 𝐸 ∈ 𝐼 is
realised as a divisor. Write 𝐾𝑋 ′ +𝑁 = 𝜇∗ (𝐾𝑋 +Δ) +𝑃 with effective R-divisors
𝑃 and 𝑁 without common components such that 𝜇∗𝑃 = 0 and 𝜇∗𝑁 = Δ. Take
the sum 𝑆 =

∑
𝑖 𝑆𝑖 of all the 𝜇-exceptional prime divisors 𝑆𝑖 not in 𝐼 and make

a klt pair (𝑋 ′, 𝑁 + 𝜀𝑆) with small positive 𝜀.
We run the (𝐾𝑋 ′ +𝑁 + 𝜀𝑆)/𝑋-MMP with scaling. It ends with a log minimal

model (𝑌, 𝑁𝑌 ) over 𝑋 for the strict transform 𝑁𝑌 of 𝑁 + 𝜀𝑆. Since 𝐾𝑋 ′ + 𝑁 +
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𝜀𝑆 ≡𝑋 𝑃 + 𝜀𝑆, the negativity lemma shows that 𝑓 : 𝑋 ′ d 𝑌 contracts all prime
divisors that appear in 𝑃 + 𝜀𝑆. On the other hand, the (𝑃 + 𝜀𝑆)-negative map
𝑓 does not contract any divisors in 𝐼. Hence 𝑓 exactly contracts 𝜇-exceptional
prime divisors not in 𝐼 and the result 𝑌 → 𝑋 is a desired contraction. �

We quote a clever application which transforms an lc pair to a dlt pair.

Theorem 1.5.18 (Hacon [270, theorem 3.1]) Let (𝑋,Δ) be an lc pair such
that 𝑋 is quasi-projective. Then there exists a birational contraction 𝜋 : 𝑌 → 𝑋

from a Q-factorial normal variety such that (𝑌,Δ𝑌 ) is dlt for the R-divisor Δ𝑌
defined by 𝐾𝑌 + Δ𝑌 = 𝜋∗ (𝐾𝑋 + Δ) with 𝜋∗Δ𝑌 = Δ.

In the remainder of the section, we shall explain how the existence of flips is
derived from the lower dimensional MMP. We follow the exposition [248]. The
argument requires familiarity with the abstract theory of the MMP. The reader
may treat this part only for reference.

Shokurov reduced the existence to that of pre-limiting flips. A pre-limiting
flip (pl flip) is the log flip of a log flipping contraction from a Q-factorial dlt
pair (𝑋,Δ) such that bΔc contains a prime divisor 𝑆 with −𝑆 relatively ample.
The following assertion is sufficient after perturbation of Δ.

Theorem 1.5.19 Let (𝑋,Δ) be a Q-factorial plt pair such thatΔ is a Q-divisor
and 𝑆 = bΔc is a prime divisor. Let 𝜋 : 𝑋 → 𝑍 be an elementary log flipping
contraction with respect to (𝑋,Δ) such that −𝑆 is 𝜋-ample. Then the log flip of
𝜋 exists.

Fix a positive integer 𝑙 such that 𝑙 (𝐾𝑋 + Δ) is integral and Cartier. The log
flip of 𝜋 is, if it exists, described as Proj𝑍 R (𝑍, 𝑙 (𝐾𝑍 + 𝜋∗Δ)) → 𝑍 by the
graded O𝑍 -algebra R (𝑍, 𝑙 (𝐾𝑍 + 𝜋∗Δ)) in Notation 1.3.17. As will be seen in
Lemma 5.1.2, the existence of the log flip is equivalent to the finite generation of
R (𝑍, 𝑙 (𝐾𝑍 + 𝜋∗Δ)). Since 𝜌(𝑋/𝑍) = 1 and −𝑆 is 𝜋-ample, it is also equivalent
to the finite generation of R (𝑍, 𝑆𝑍 ) for 𝑆𝑍 = 𝜋∗𝑆. The lemma below is used
implicitly.

Lemma 1.5.20 Let 𝑋 be a variety and let R =
⊕

𝑖∈N R𝑖 be a graded O𝑋 -
algebra which is an integral domain. Fix a positive integer 𝑙. Then R is a finitely
generated O𝑋 -algebra if and only if so is the truncation S =

⊕
𝑖∈N R𝑖𝑙 .

Proof The only-if part is obvious. To see the converse, suppose that S is
finitely generated, by which S is a noetherian domain. It suffices to prove that
M 𝑗 =

⊕
𝑖∈N R𝑖𝑙+ 𝑗 is a finite S -module for each 0 ≤ 𝑗 < 𝑙. We may assume

that M 𝑗 ≠ 0 and locally take a non-zero member𝑚 𝑗 of M 𝑗 . The multiplication
by 𝑚𝑙−1

𝑗
defines an injection M 𝑗 ↩→ S of S -modules. Since S is noetherian,

the finiteness of M 𝑗 follows. �
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By Theorem 1.4.26(i), 𝑆 is normal. By Proposition 2.2.23, the quotient
Q𝑖 = O𝑋 (𝑖𝑆)/O𝑋 ((𝑖 − 1)𝑆) is a divisorial sheaf on 𝑆. Let S𝑖 denote the
image of the induced map O𝑍 (𝑖𝑆𝑍 ) = 𝜋∗O𝑋 (𝑖𝑆) → 𝜋∗Q𝑖 . It fits into the exact
sequence

0→ O𝑍 ((𝑖 − 1)𝑆𝑍 ) → O𝑍 (𝑖𝑆𝑍 ) → S𝑖 → 0.

Then R (𝑍, 𝑆𝑍 ) is finitely generated if and only if so is the graded O𝑆𝑍 -algebra⊕
𝑖∈N S𝑖 . This is also equivalent to the finite generation of

⊕
𝑖∈N R𝑖 for the

image R𝑖 of the restriction map

𝜋∗O𝑋 (𝑖𝑙 (𝐾𝑋 + Δ)) → 𝜋∗O𝑆 (𝑖𝑙 (𝐾𝑋 + Δ) |𝑆).

We shall demonstrate this finite generation applying the extension theorem
due to Hacon–McKernan [170] and Takayama [438]. What will be used is the
following variant.

Theorem 1.5.21 (Extension theorem [171, theorem 5.4.21]) Let 𝜋 : 𝑋 → 𝑍

be a projective morphism from a smooth variety to a variety. Let (𝑋,Δ) be a
plt pair such that Δ is a Q-divisor with snc support and 𝑆 = bΔc is a prime
divisor. Take a positive integer 𝑙 such that 𝐿 = 𝑙 (𝐾𝑋 + Δ) is integral. Suppose
that Δ = 𝑆 + 𝐴 +𝐶 with a 𝜋-ample Q-divisor 𝐴 and an effective Q-divisor 𝐶 in
which 𝑆 does not appear. Suppose that the relative base locus of 𝑎𝐿 contains
no lc centres of (𝑋, dΔe) for some positive integer 𝑎. Then the natural map
𝜋∗O𝑋 (𝐿) → 𝜋∗O𝑆 (𝐿 |𝑆) is surjective.

We fix a log resolution 𝜇 : 𝑌 → 𝑋 of (𝑋,Δ) with 𝜋𝑌 = 𝜋 ◦ 𝜇 : 𝑌 → 𝑍 . Let
𝑇 denote the strict transform in 𝑌 of 𝑆 and let 𝜋𝑇 = 𝜋𝑌 |𝑇 : 𝑇 → 𝑆𝑍 , which
is birational. We write 𝐾𝑌 + Δ𝑌 = 𝜇∗ (𝐾𝑋 + Δ) + 𝑃 with effective Q-divisors
𝑃 and Δ𝑌 without common components such that 𝜇∗𝑃 = 0 and 𝜇∗Δ𝑌 = Δ.
We may choose 𝜇 so that the support of Δ𝑌 − 𝑇 is a disjoint union of prime
divisors. Indeed for the expression Δ𝑌 = 𝑇 + ∑

𝑖 𝑒𝑖𝐸𝑖 with prime divisors 𝐸𝑖
and 𝑒𝑖 ∈ Q>0, let 𝑎 be the maximum of 𝑒𝑖 + 𝑒 𝑗 such that 𝐸𝑖 ∩ 𝐸 𝑗 ≠ ∅ and let
𝑏 be the number of pairs (𝐸𝑖 , 𝐸 𝑗 ) such that 𝐸𝑖 ∩ 𝐸 𝑗 ≠ ∅ and 𝑒𝑖 + 𝑒 𝑗 = 𝑎. Then
the blow-up of 𝑌 along 𝐸𝑖 ∩ 𝐸 𝑗 decreases (𝑎, 𝑏) with respect to lexicographic
order. We write 𝐾𝑇 + Δ𝑇 = (𝐾𝑌 + Δ𝑌 ) |𝑇 by Δ𝑇 = (Δ𝑌 − 𝑇) |𝑇 . Then (𝑇,Δ𝑇 )
is terminal.

We build a tower · · · → 𝑌2 → 𝑌1 → 𝑌0 = 𝑌 of log resolutions inductively.

Lemma 1.5.22 There exists a sequence {(𝜇𝑖 , 𝐷𝑖)}𝑖≥1 of pairs of a log reso-
lution 𝜇𝑖 : 𝑌𝑖 → 𝑋 of (𝑋,Δ) factoring through 𝑌𝑖−1 as 𝑌𝑖 → 𝑌𝑖−1 → 𝑋 and a
Q-divisor 𝐷𝑖 on 𝑌𝑖 which satisfies the following. Let 𝜋𝑖 = 𝜋 ◦ 𝜇𝑖 : 𝑌𝑖 → 𝑍 and
𝑇𝑖 = 𝜇

−1
𝑖∗ 𝑆 and write 𝐾𝑌𝑖 +Δ𝑖 = 𝜇∗𝑖 (𝐾𝑋 +Δ) + 𝑃𝑖 with 𝜇𝑖∗𝑃𝑖 = 0 and 𝜇𝑖∗Δ𝑖 = Δ

in the same manner as above. Then for all 𝑖 and 𝑗 ,
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• the induced morphism 𝑇𝑖 → 𝑇 is an isomorphism,
• 𝑇𝑖 ≤ 𝐷𝑖 ≤ Δ𝑖 and 𝑖𝑙𝐷𝑖 is integral,
• 𝑖𝑙 (𝐾𝑌𝑖 + 𝐷𝑖) and 𝑖𝑙 (𝐾𝑌𝑖 + Δ𝑖) have the same 𝜋𝑖-mobile part 𝑀𝑖 ,
• 𝜋𝑖∗O𝑌𝑖 (𝑎𝑖𝑙 (𝐾𝑌𝑖 +𝐷𝑖)) → 𝜋𝑇 ∗O𝑇 (𝑎𝑖𝑙 (𝐾𝑇 +𝐶𝑖)) is surjective for any positive

integer 𝑎, where 𝐶𝑖 = (𝐷𝑖 − 𝑇𝑖) |𝑇 via 𝑇𝑖 ' 𝑇 and
• 𝑖𝐶𝑖 + 𝑗𝐶 𝑗 ≤ (𝑖 + 𝑗)𝐶𝑖+ 𝑗 .

Proof For a log resolution 𝜇𝑖 : 𝑌𝑖 → 𝑋 which factors through𝑌𝑖−1 and induces
an isomorphism 𝑇𝑖 ' 𝑇 , we take the decomposition 𝑖𝑙 (𝐾𝑌𝑖 +Δ𝑖) = 𝑀𝑖 + 𝐹𝑖 into
the 𝜋𝑖-mobile part 𝑀𝑖 and the 𝜋𝑖-fixed part 𝐹𝑖 . Note that 𝐹𝑖 is 𝜋𝑖-exceptional.
Let Σ𝑖 denote the support of Δ𝑖 −𝑇𝑖 . We take 𝑌𝑖−1 as 𝑌𝑖 initially and blow up 𝑌𝑖
along𝐺∩𝑇𝑖 for a prime divisor𝐺 ⊂ Σ𝑖 successively until the relative base locus
of 𝑀𝑖 contains no components of Σ𝑖 ∩𝑇𝑖 . This blow-up keeps 𝑇𝑖 isomorphic to
𝑇 . We further blow up 𝑌𝑖 along 𝐺 ∩ 𝐺 ′ for prime divisors 𝐺,𝐺 ′ ⊂ Σ𝑖 until Σ𝑖
is a disjoint union of prime divisors.

Let 𝐸𝑖 be the maximal divisor on 𝑌𝑖 such that 𝐸𝑖 ≤ 𝑖𝑙 (Δ𝑖 − 𝑇𝑖) and 𝐸𝑖 ≤ 𝐹𝑖 .
In other words, 𝐸𝑖 is the componentwise minimum of 𝑖𝑙 (Δ𝑖 − 𝑇𝑖) and 𝐹𝑖 . We
take 𝐷𝑖 = Δ𝑖 − 𝐸𝑖/𝑖𝑙. Then 𝑇𝑖 ≤ 𝐷𝑖 ≤ Δ𝑖 and

𝑖𝑙 (𝐾𝑌𝑖 + 𝐷𝑖) = 𝑀𝑖 + (𝐹𝑖 − 𝐸𝑖)

with the effective divisor 𝐹𝑖 − 𝐸𝑖 which has no common components with
𝐷𝑖 . In particular, 𝑖𝑙 (𝐾𝑌𝑖 + 𝐷𝑖) still has the 𝜋𝑖-mobile part 𝑀𝑖 . One can ap-
ply Theorem 1.5.21 to the plt pair (𝑌𝑖/𝑍, 𝐷𝑖), which asserts the surjection
𝜋𝑖∗O𝑌𝑖 (𝑎𝑖𝑙 (𝐾𝑌𝑖 + 𝐷𝑖)) � 𝜋𝑇 ∗O𝑇 (𝑎𝑖𝑙 (𝐾𝑇 + 𝐶𝑖)) for any 𝑎 ∈ Z>0 with 𝐶𝑖 =
(𝐷𝑖 − 𝑇𝑖) |𝑇 via 𝑇𝑖 ' 𝑇 .

The inequality 𝐾𝑌𝑗 + Δ 𝑗 ≥ 𝜇∗
𝑖 𝑗
(𝐾𝑌𝑖 + Δ𝑖) by 𝜇𝑖 𝑗 : 𝑌 𝑗 → 𝑌𝑖 for 𝑖 ≤ 𝑗 is an

equality about 𝑇𝑗 , and Δ 𝑗 − 𝑇𝑗 equals 𝜇∗
𝑖 𝑗
(Δ𝑖 − 𝑇𝑖) about 𝑇𝑗 . Hence about 𝑇𝑖+ 𝑗 ,

one has 𝐹𝑖+ 𝑗 ≤ 𝜇∗𝑖,𝑖+ 𝑗𝐹𝑖 + 𝜇∗𝑗 ,𝑖+ 𝑗𝐹𝑗 and 𝑖𝜇∗
𝑖,𝑖+ 𝑗 (𝐷𝑖 − 𝑇𝑖) + 𝑗 𝜇∗𝑗 ,𝑖+ 𝑗 (𝐷 𝑗 − 𝑇𝑗 ) ≤

(𝑖 + 𝑗) (𝐷𝑖+ 𝑗 − 𝑇𝑖+ 𝑗 ). This yields 𝑖𝐶𝑖 + 𝑗𝐶 𝑗 ≤ (𝑖 + 𝑗)𝐶𝑖+ 𝑗 . �

By the convexity 𝑖𝐶𝑖 + 𝑗𝐶 𝑗 ≤ (𝑖 + 𝑗)𝐶𝑖+ 𝑗 and the boundedness 𝐶𝑖 ≤ Δ𝑇 , the
sequence {𝐶𝑖}𝑖 converges to some effective R-divisor𝐶 ≤ Δ𝑇 . The pair (𝑇, 𝐶)
is terminal as so is (𝑇,Δ𝑇 ).

Take a log minimal model 𝑓𝑖 : 𝑇 d 𝑇𝑖/𝑆𝑍 of the terminal pair (𝑇, 𝐶𝑖)/𝑆𝑍 by
the lower dimensional MMP. We apply the finiteness of log minimal models in
Theorem 1.5.8(ii) in the neighbourhood at 𝐶 in the real vector space generated
by prime divisors appearing in Δ𝑇 . It shows that there exist only finitely many
models 𝑇𝑖 up to isomorphism. Then replacing 𝜇 by a higher log resolution, we
can assume that every 𝑓𝑖 is a contraction 𝑇 → 𝑇𝑖/𝑆𝑍 .

By the base-point free theorem, the relatively nef and big divisor 𝑖𝑙 (𝐾𝑇̄𝑖 +
𝑓𝑖∗𝐶𝑖) is relatively semi-ample. Hence there exists a positive integer 𝑎𝑖 such
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that 𝑎𝑖𝑖𝑙 (𝐾𝑇̄𝑖 + 𝑓𝑖∗𝐶𝑖) is relatively free. The pull-back 𝑄𝑖 = 𝑎𝑖𝑖𝑙 𝑓 ∗𝑖 (𝐾𝑇̄𝑖 + 𝑓𝑖∗𝐶𝑖)
coincides with the 𝜋𝑇 -mobile part of 𝑎𝑖𝑖𝑙 (𝐾𝑇 + 𝐶𝑖) and it is relatively free.
By the surjection in Lemma 1.5.22, the 𝜋𝑖-mobile part 𝑅𝑖 of 𝑎𝑖𝑖𝑙 (𝐾𝑌𝑖 + 𝐷𝑖)
becomes relatively free with 𝑄𝑖 = 𝑅𝑖 |𝑇 after blowing up 𝑌𝑖 away from 𝑇𝑖 if
necessary.

We keep the notation 𝑀𝑖 in Lemma 1.5.22 and define 𝐿𝑖 = 𝑀𝑖 |𝑇 . Write
𝐾𝑇 = (𝜇 |𝑇 )∗ ((𝐾𝑋 + Δ) |𝑆) + 𝐹 with 𝐹 = 𝑃 |𝑇 − Δ𝑇 . Then d𝐹e ≥ 0.

Lemma 1.5.23 The sequence {𝐿𝑖/𝑖}𝑖 converges to an R-divisor 𝐴 on 𝑇 . The
limit 𝐴 is 𝜋𝑇 -semi-ample and the 𝜋𝑇 -mobile part of d𝑖𝐴 + 𝐹e is at most 𝐿𝑖 .

Proof Keep the notation 𝜇𝑖 𝑗 : 𝑌 𝑗 → 𝑌𝑖 . Observe that 𝜇∗
𝑖,𝑖+ 𝑗𝑀𝑖 + 𝜇∗𝑗 ,𝑖+ 𝑗𝑀 𝑗 ≤

𝑀𝑖+ 𝑗 and hence 𝐿𝑖 + 𝐿 𝑗 ≤ 𝐿𝑖+ 𝑗 ≤ (𝑖 + 𝑗)𝑙 (𝐾𝑇 + Δ𝑇 ). Thus the limit 𝐴 of
{𝐿𝑖/𝑖}𝑖 exists with 𝐴 ≤ 𝑙 (𝐾𝑇 +Δ𝑇 ). From 𝑎𝑖𝑀𝑖 ≤ 𝑅𝑖 and 𝜇∗

𝑖,𝑎𝑖 𝑖
𝑅𝑖 ≤ 𝑀𝑎𝑖 𝑖 , one

has 𝑎𝑖𝐿𝑖 ≤ 𝑄𝑖 ≤ 𝐿𝑎𝑖 𝑖 , that is, 𝐿𝑖/𝑖 ≤ 𝑄𝑖/𝑎𝑖𝑖 ≤ 𝐿𝑎𝑖 𝑖/𝑎𝑖𝑖. Hence 𝐴 is also the
limit of the sequence of𝑄𝑖/𝑎𝑖𝑖 = 𝑙 𝑓 ∗𝑖 (𝐾𝑇̄𝑖 + 𝑓𝑖∗𝐶𝑖). Choosing one of the finitely
many models 𝑇𝑖 up to isomorphism, one can describe 𝐴 as 𝑙 𝑓 ∗

𝑖
(𝐾𝑇̄𝑖 + 𝑓𝑖∗𝐶).

This is the pull-back of the relatively nef and big R-divisor 𝑙 (𝐾𝑇̄𝑖 + 𝑓𝑖∗𝐶), which
is relatively semi-ample by the base-point free theorem.

For a divisor 𝐵 on 𝑌 𝑗 or 𝑇 , we write Mb(𝐵) for the relative mobile part of 𝐵
over 𝑍 or 𝑆𝑍 . For all 𝑖, 𝑗 ≥ 1, since( 𝑖𝑅 𝑗

𝑎 𝑗 𝑗
+ 𝑃 𝑗 − Δ 𝑗

)
− 𝐾𝑌𝑗 =

𝑖𝑅 𝑗

𝑎 𝑗 𝑗
− 𝜇∗𝑗 (𝐾𝑋 + Δ)

is relatively nef and big, 𝑅1𝜋 𝑗∗O𝑌𝑗 (d𝑖𝑅 𝑗/𝑎 𝑗 𝑗 + 𝑃 𝑗 − Δ 𝑗e) = 0 by Kawamata–
Viheweg vanishing. This provides the surjection 𝜋 𝑗∗O𝑌𝑗 (d𝑖𝑅 𝑗/𝑎 𝑗 𝑗 + Γ 𝑗e) �
𝜋𝑇 ∗O𝑇 (d𝑖𝑄 𝑗/𝑎 𝑗 𝑗 + 𝐹e) for Γ 𝑗 = 𝑃 𝑗 + 𝑇𝑗 − Δ 𝑗 . Hence

Mb
(⌈ 𝑖𝑄 𝑗

𝑎 𝑗 𝑗
+ 𝐹

⌉)
≤ Mb

(⌈ 𝑖𝑅 𝑗
𝑎 𝑗 𝑗
+ Γ 𝑗

⌉)���
𝑇
.

From 𝑅 𝑗/𝑎 𝑗 𝑗 ≤ 𝑙 (𝐾𝑌𝑗 + Δ 𝑗 ) = 𝑙𝜇∗𝑗 (𝐾𝑋 + Δ) + 𝑙𝑃 𝑗 and dΓ 𝑗e = d𝑃 𝑗e, one has

Mb
(⌈ 𝑖𝑅 𝑗
𝑎 𝑗 𝑗
+ Γ 𝑗

⌉)���
𝑇
≤ Mb(𝑖𝑙𝜇∗𝑗 (𝐾𝑋 + Δ) + 𝑖𝑙𝑃 𝑗 + d𝑃 𝑗e) |𝑇

= Mb(𝑖𝑙𝜇∗𝑗 (𝐾𝑋 + Δ)) |𝑇 = Mb(𝑖𝑙𝜇∗𝑖 (𝐾𝑋 + Δ)) |𝑇 = 𝐿𝑖 .

Join these two inequalities into Mb(d𝑖𝑄 𝑗/𝑎 𝑗 𝑗 + 𝐹e) ≤ 𝐿𝑖 . This tends to the
inequality Mb(d𝑖𝐴 + 𝐹e) ≤ 𝐿𝑖 when 𝑗 goes to infinity. �

Proof of Theorem 1.5.19 We have observed that the theorem is equivalent to
the finite generation of R =

⊕
𝑖∈N R𝑖 for the image R𝑖 of 𝜋∗O𝑋 (𝑖𝑙 (𝐾𝑋+Δ)) →

𝜋∗O𝑆 (𝑖𝑙 (𝐾𝑋 + Δ) |𝑆). By Lemma 1.5.22, R𝑖 = 𝜋𝑇 ∗O𝑇 (𝐿𝑖). Note that 𝐿𝑖 ≤ 𝑖𝐴
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for the 𝜋𝑇 -semi-ample R-divisor 𝐴 in Lemma 1.5.23 since {𝐿2𝑝𝑖/2𝑝𝑖}𝑝∈N is
non-decreasing and converges to 𝐴.

If 𝐴 is a Q-divisor, then there exists a positive integer 𝑛 such that 𝑛𝐴 is
integral, Cartier and 𝜋𝑇 -free. Then 𝑖𝑛𝐴 ≤ 𝐿𝑖𝑛 by Lemma 1.5.23 and hence
𝐿𝑖𝑛 = 𝑖𝑛𝐴. Now R𝑖𝑛 = 𝜋𝑇 ∗O𝑇 (𝑖𝑛𝐴) and 𝑛𝐴 is 𝜋𝑇 -free. Thus

⊕
𝑖∈N R𝑖𝑛 is

finitely generated and so is R by Lemma 1.5.20.
If 𝐴 were not a Q-divisor, then by the Diophantine approximation in [48,

lemma 3.7.6], for any 𝜀 > 0, there would exist 𝑖 ≥ 1 and a 𝜋𝑇 -free Cartier
divisor 𝐺 such that 𝐺 � 𝑖𝐴 and such that every prime divisor has coefficient
at least −𝜀 in 𝑖𝐴−𝐺. The latter property implies that d𝐹 + 𝑖𝐴 − 𝐺e is effective
if 𝜀 is sufficiently small. Consequently 𝐺 ≤ 𝐺 + d𝐹 + 𝑖𝐴 − 𝐺e = d𝑖𝐴 + 𝐹e and
hence 𝐺 ≤ 𝐿𝑖 ≤ 𝑖𝐴 by Lemma 1.5.23, which contradicts 𝐺 � 𝑖𝐴. �

1.6 Termination of Flips

In spite of the establishment of the termination of the MMP with scaling in the
setting of Corollary 1.5.13, we still do not know whether an arbitrary MMP
terminates or not. The full termination is only known up to dimension three.

Theorem 1.6.1 ([240], [424, theorem 4.1]) The termination of log flips in
Conjecture 1.4.15 holds in dimension three.

The proof relies on the decreasing property of an invariant named the diffi-
culty, which grew out of the work of Shokurov [423, definition 2.15]. We shall
demonstrate the termination for terminal threefold pairs. Before this, we see
that a terminal threefold singularity is isolated.

Lemma 1.6.2 If (𝑋,Δ) is a terminal threefold pair, then 𝑋 has isolated
singularities.

Proof We may assume that 𝑋 is affine. Take a log resolution 𝜇 : 𝑋 ′ → 𝑋 of
(𝑋,Δ) and write 𝐾𝑋 ′ + Δ′ = 𝜇∗ (𝐾𝑋 + Δ) + 𝑃 with the strict transform Δ′ of Δ
and an exceptional R-divisor 𝑃. Every exceptional prime divisor has positive
coefficient in 𝑃. Let 𝐶 be an arbitrary curve in 𝑋 . Take the general hyperplane
section 𝑆 of 𝑋 , which intersects 𝐶 properly at a general point 𝑥 in 𝐶. It suffices
to prove that 𝑆 is smooth at 𝑥, from which we deduce that 𝑋 is smooth at 𝑥.

By the general choice of 𝑆, 𝜇 is also a log resolution of (𝑋,Δ + 𝑆) and
𝐾𝑆′ + Δ′ |𝑆′ ≡𝑆 𝑃 |𝑆′ with 𝑆′ = 𝜇−1

∗ 𝑆 = 𝜇∗𝑆. Unless 𝑃 |𝑆′ is zero, 𝐾𝑆′ is not
𝜇-nef by the negativity lemma and one can find and contract a relative (−1)-
curve in 𝑆′/𝑆. One eventually attains a smooth surface 𝑇/𝑆 in which the strict
transform of 𝑃 |𝑆′ becomes zero. Then 𝜇𝑇 : 𝑇 → 𝑆 is finite. It is an isomorphism
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because 𝑆 is Cohen–Macaulay by Theorem 1.4.20, or from the following direct
argument. The natural map O𝑋 (−𝑆) ⊗𝑅1𝜇∗O𝑋 ′ = 𝑅1𝜇∗O𝑋 ′ (−𝑆′) → 𝑅1𝜇∗O𝑋 ′

is surjective by 𝑅1𝜇∗O𝑆′ ' 𝑅1𝜇𝑇 ∗O𝑇 = 0. Hence 𝑅1𝜇∗O𝑋 ′ is zero about 𝑆 and
O𝑋 → 𝜇∗O𝑆′ = 𝜇𝑇 ∗O𝑇 is surjective. Then 𝑇 ' 𝑆 and 𝑆 is smooth. �

We do not assume relative setting in the following theorem. We do not need
Q-factoriality if the boundary is zero.

Theorem 1.6.3 Let (𝑋,Δ) be a Q-factorial canonical threefold pair such
that bΔc = 0. Then there exists no infinite sequence 𝑋 = 𝑋0 d 𝑋1 d · · · of
elementary log flips with respect to (𝑋𝑖 ,Δ𝑖) for the strict transform Δ𝑖 of Δ.

Proof Write Δ =
∑𝑛
𝑗=1 𝑑 𝑗𝐷 𝑗 with prime divisors 𝐷 𝑗 and 𝑑 𝑗 ∈ R>0. We shall

prove the theorem by induction on the number 𝑛 of components of Δ. We write
the log flip as 𝑋𝑖 → 𝑌𝑖 ← 𝑋𝑖+1.

Let 𝑑 be the maximum of 𝑑 𝑗 , where we define 𝑑 = 0 if 𝑛 = 0, that is, Δ = 0.
Discussing on a log resolution of (𝑋,Δ), we have the finiteness of the number
of divisors 𝐸 over 𝑋 with log discrepancy 𝑎𝐸 (𝑋,Δ) < 2 − 𝑑. Define the finite
set 𝑆 = {𝑠 ∈ 𝑑 + ∑

𝑗 N𝑑 𝑗 | 𝑠 < 1}, where 𝑆 = {0} if 𝑛 = 0. For 𝑠 ∈ 𝑆, let
𝑁 (𝑖, 𝑠) denote the number of divisors 𝐸 over 𝑋𝑖 such that 𝑎𝐸 (𝑋𝑖 ,Δ𝑖) < 2 − 𝑠.
We define the difficulty

𝐷 (𝑖) =
∑︁
𝑠∈𝑆

𝑁 (𝑖, 𝑠).

The sequence {𝐷 (𝑖)}𝑖 is non-increasing since the inequality 𝑎𝐸 (𝑋𝑖 ,Δ𝑖) ≤
𝑎𝐸 (𝑋𝑖+1,Δ𝑖+1) holds in our situation similarly to Lemma 1.4.12.

Assume that 𝑛 = 0, in which 𝐷 (𝑖) = 𝑁 (𝑖, 0). Take a curve 𝐶+ in 𝑋𝑖+1
contracted to a point in 𝑌𝑖 . In the same manner as for Lemma 1.4.12, every
divisor 𝐸 over 𝑋𝑖+1 with centre 𝑐𝑋𝑖+1 (𝐸) = 𝐶+ has 1 ≤ 𝑎𝐸 (𝑋𝑖) < 𝑎𝐸 (𝑋𝑖+1).
Hence 𝑋𝑖+1 is terminal at the generic point 𝜂 of 𝐶+ and thus smooth at 𝜂 by
Lemma 1.6.2. By blowing up 𝑋𝑖+1 along𝐶+ about 𝜂, one obtains the exceptional
divisor 𝐹 with 𝑎𝐹 (𝑋𝑖+1) = 2. Since 𝑎𝐹 (𝑋𝑖) < 𝑎𝐹 (𝑋𝑖+1) = 2, 𝐹 is counted in
𝑁 (𝑖, 0) but not in 𝑁 (𝑖 + 1, 0). Thus the strict inequality 𝐷 (𝑖 + 1) < 𝐷 (𝑖) holds
and the sequence must terminate.

When 𝑛 ≥ 1, we assume without loss of generality that 𝑑𝑛 = 𝑑. Let 𝐷 𝑗𝑖 be
the strict transform in 𝑋𝑖 of 𝐷 𝑗 . If there exists a curve𝐶+ in 𝐷𝑛,𝑖+1 contracted to
a point in 𝑌𝑖 , then the same argument as above shows that 𝑋𝑖+1 is smooth at the
generic point 𝜂 of𝐶+. The divisor 𝐹 obtained at 𝜂 by the blow-up of 𝑋𝑖+1 along
𝐶+ has 𝑎𝐹 (𝑋𝑖 ,Δ𝑖) < 𝑎𝐹 (𝑋𝑖+1,Δ𝑖+1) = 2 − 𝑠 for 𝑠 =

∑
𝑗 𝑑 𝑗 ord𝐹 𝐷 𝑗 ,𝑖+1 ∈ 𝑆. It

is counted in 𝑁 (𝑖, 𝑠) but not in 𝑁 (𝑖 + 1, 𝑠). Hence for the normalisation 𝑇𝑖 of
𝐷𝑛𝑖 , the induced map 𝑇𝑖 d 𝑇𝑖+1 is a morphism for all 𝑖 after truncation of the
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sequence. Take a compactification 𝑇0 of 𝑇0 which is smooth about 𝑇0 \ 𝑇0, and
compactify 𝑇𝑖 → 𝑇𝑖+1 to 𝑇𝑖 → 𝑇𝑖+1 naturally.

If 𝐷𝑛𝑖 contains a curve 𝐶 contracted to a point in 𝑌𝑖 , then 𝑇𝑖 → 𝑇𝑖+1 is not
isomorphic above 𝐶 and hence 𝜌(𝑇𝑖+1) < 𝜌(𝑇𝑖) as (−𝐾𝑋𝑖 · 𝐶) ≠ 0. Truncating
the sequence again, we attain the situation where 𝑇𝑖 ' 𝑇𝑖+1 for all 𝑖. Then 𝐷𝑛𝑖
is nef over 𝑌𝑖 and 𝑋𝑖 d 𝑋𝑖+1 is a log flip with respect to (𝑋𝑖 ,

∑𝑛−1
𝑗=1 𝑑 𝑗𝐷 𝑗𝑖). By

the assumption of induction on 𝑛, the sequence terminates. �

Shokurov reduced the termination in an arbitrary dimension to the two
properties in Conjecture 1.6.5 of an invariant of singularity called the minimal
log discrepancy. We include the proof for the sake of completion.

Definition 1.6.4 Let (𝑋,Δ) be a pair. Let 𝜂 be a scheme-theoretic point in 𝑋
with closure 𝑍 = {𝜂} in 𝑋 . The minimal log discrepancy mld𝜂 (𝑋,Δ) of the
pair (𝑋,Δ) at 𝜂 is defined as

mld𝜂 (𝑋,Δ) = inf{𝑎𝐸 (𝑋,Δ) | 𝐸 divisor over 𝑋, 𝑐𝑋 (𝐸) = 𝑍}.

Taking a log resolution of (𝑋,Δ, 𝔭) for the ideal sheaf 𝔭 in O𝑋 defining 𝑍 ,
one sees that mld𝜂 (𝑋,Δ) is either a non-negative real number or minus infinity
and that it is actually the minimum unless mld𝜂 (𝑋,Δ) = −∞. It satisfies the
relation mld𝑧 (𝑋,Δ) = mld𝜂 (𝑋,Δ) + dim 𝑍 for a general closed point 𝑧 in 𝑍 .
It is sometimes convenient to use the minimal log discrepancy of (𝑋,Δ) in a
closed subset𝑊 of 𝑋 which is defined as

mld𝑊 (𝑋,Δ) = inf{𝑎𝐸 (𝑋,Δ) | 𝐸 divisor over 𝑋, 𝑐𝑋 (𝐸) ⊂ 𝑊}.

We say that a subset 𝐼 of the real numbers satisfies the ascending chain
condition, or the ACC for short, if there exists no strictly increasing infinite
sequence in 𝐼. We say that 𝐼 satisfies the descending chain condition, or the
DCC, if there exists no strictly decreasing infinite sequence in 𝐼.

Conjecture 1.6.5 (i) (Lower semi-continuity) For a pair (𝑋,Δ), the func-
tion 𝑋𝑚 → R≥0∪{−∞} from the set 𝑋𝑚 of closed points in 𝑋 which sends
𝑥 to mld𝑥 (𝑋,Δ) is lower semi-continuous.

(ii) (ACC) Fix a positive integer 𝑛 and a subset 𝐼 of the positive real numbers
which satisfies the DCC. Then the set

{mld𝑥 (𝑋,Δ) | (𝑋,Δ) pair, dim 𝑋 = 𝑛, Δ ∈ 𝐼}

satisfies the ACC, where Δ ∈ 𝐼 means that all coefficients in Δ belong to 𝐼.

The lower semi-continuity was verified in dimension three by Ambro [12] as
an easy consequence of the MMP. On the other hand, the ACC was only proved
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in dimension two by Alexeev [7]. The proof requires deep numerical analysis
of surface singularities.

We assume the projectivity of the variety in the following theorem.

Theorem 1.6.6 (Shokurov [427]) Let (𝑋,Δ) be an lc pair such that 𝑋 is
projective. Assume Conjecture 1.6.5 in the dimension of 𝑋 . Then there exists
no infinite sequence 𝑋 = 𝑋0 d 𝑋1 d · · · of log flips 𝑋𝑖 d 𝑋𝑖+1 associated
with an (𝐾𝑋𝑖 +Δ𝑖)-negative extremal face of NE(𝑋𝑖) for the strict transform Δ𝑖

of Δ.

Proof We write the log flip 𝑓𝑖 : 𝑋𝑖 d 𝑋𝑖+1 as 𝑋𝑖 → 𝑌𝑖 ← 𝑋𝑖+1 where 𝑋𝑖 and
𝑌𝑖 are projective. Let 𝑍𝑖 and 𝑍+

𝑖
denote the exceptional loci of 𝑋𝑖 → 𝑌𝑖 and

𝑋𝑖+1 → 𝑌𝑖 respectively.
Step 1 We use the ACC in this step. Let 𝑎𝑖 = mld𝑍𝑖 (𝑋𝑖 ,Δ𝑖). We claim the

existence of a real number 𝑎 such that 𝑎 ≤ 𝑎𝑖 for all 𝑖 after truncation and such
that 𝑎 = 𝑎𝑖 for infinitely many 𝑖.

Consider the non-decreasing sequence 𝛼0 ≤ 𝛼1 ≤ · · · of 𝛼𝑖 = inf{𝑎 𝑗 | 𝑖 ≤
𝑗}. It suffices to show that for any 𝑖, there exists 𝑗 ≥ 𝑖 such that 𝛼𝑖 = 𝑎 𝑗 . Indeed,
then 𝛼𝑖 = mld𝜂 (𝑋 𝑗 ,Δ 𝑗 ) = mld𝑧 (𝑋 𝑗 ,Δ 𝑗 )−dim {𝜂}with some scheme-theoretic
point 𝜂 in 𝑍 𝑗 and a general point 𝑧 in {𝜂}. The ACC provides a real number 𝑎
such that 𝑎 = 𝛼𝑖 for all sufficiently large 𝑖, which satisfies the property in the
claim.

Let 𝛼𝑖𝑙 = min{𝑎 𝑗 | 𝑖 ≤ 𝑗 ≤ 𝑙}, which equals 𝑎 𝑗 = 𝑎𝐸 (𝑋 𝑗 ,Δ 𝑗 ) for some
𝑖 ≤ 𝑗 ≤ 𝑙 and a divisor𝐸 over 𝑋 𝑗 with 𝑐𝑋 𝑗 (𝐸) ⊂ 𝑍 𝑗 . Similarly to Lemma 1.4.12,

𝑎𝐸 (𝑋𝑖 ,Δ𝑖) ≤ 𝑎𝐸 (𝑋𝑖+1,Δ𝑖+1) ≤ · · · ≤ 𝑎𝐸 (𝑋 𝑗 ,Δ 𝑗 ).

If 𝑐𝑋𝑝 (𝐸) were contained in 𝑍𝑝 for some 𝑖 ≤ 𝑝 < 𝑗 , then the strict inequality
𝑎𝐸 (𝑋𝑝 ,Δ𝑝) < 𝑎𝐸 (𝑋𝑝+1,Δ𝑝+1) would hold as in the same lemma and hence
𝑎𝑝 ≤ 𝑎𝐸 (𝑋𝑝 ,Δ𝑝) < 𝑎 𝑗 , which contradicts 𝑎 𝑗 = 𝛼𝑖𝑙 ≤ 𝑎𝑝 . Thus 𝑐𝑋𝑝 (𝐸) ⊄ 𝑍𝑝
for all 𝑖 ≤ 𝑝 < 𝑗 . It follows that 𝑋𝑖 d 𝑋 𝑗 is isomorphic at the generic point
𝜂𝐸 of 𝑐𝑋𝑖 (𝐸) and 𝛼𝑖𝑙 = mld𝜂𝐸 (𝑋𝑖 ,Δ𝑖). This number belongs to a finite set
given by the fixed pair (𝑋𝑖 ,Δ𝑖). Hence the non-increasing sequence {𝛼𝑖𝑙}𝑙≥𝑖
stabilises at the infimum 𝛼𝑖 .

Step 2 Take the truncation as in Step 1. For infinitely many 𝑖, 𝑍𝑖 has a
scheme-theoretic point 𝜂𝑖 with mld𝜂𝑖 (𝑋𝑖 ,Δ𝑖) = mld𝑍𝑖 (𝑋𝑖 ,Δ𝑖) = 𝑎. Let 𝑑 be
the maximum number such that for infinitely many 𝑖, there exists 𝜂𝑖 ∈ 𝑍𝑖 with
mld𝜂𝑖 (𝑋𝑖 ,Δ𝑖) = 𝑎 and 𝑑 = dim {𝜂𝑖}. We take the Zariski closure 𝑊𝑖 in 𝑋𝑖 of
the subset of scheme-theoretic points

{𝜂 ∈ 𝑋𝑖 | mld𝜂 (𝑋𝑖 ,Δ𝑖) = 𝑎, 𝑑 = dim {𝜂}}.
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Then 𝑊𝑖+1 = 𝑊𝑖+1 \ 𝑍+𝑖 because every divisor 𝐸 over 𝑋𝑖+1 with 𝑐𝑋𝑖+1 (𝐸) ⊂
𝑍+
𝑖

has 𝑎 ≤ 𝑎𝑖 ≤ 𝑎𝐸 (𝑋𝑖 ,Δ𝑖) < 𝑎𝐸 (𝑋𝑖+1,Δ𝑖+1). Thus 𝑓𝑖 induces a birational
map𝑊 ′

𝑖
d 𝑊𝑖+1 from the closure𝑊 ′

𝑖
of 𝑓 −1

𝑖
(𝑊𝑖+1 \ 𝑍+𝑖 ) ⊂ 𝑊𝑖 . By noetherian

induction, every 𝑓𝑖 induces a birational map𝑊𝑖 d 𝑊𝑖+1 after truncation.
Step 3 We use the lower semi-continuity in this step. By the definition of

𝑊𝑖 , closed points 𝑧 in 𝑊𝑖 with mld𝑧 (𝑋𝑖 ,Δ𝑖) = 𝑎 + 𝑑 form a Zariski dense
subset of 𝑊𝑖 . By the lower semi-continuity, every closed point 𝑧 in 𝑊𝑖 has
mld𝑧 (𝑋𝑖 ,Δ𝑖) ≤ 𝑎 + 𝑑.

We shall prove that 𝑊𝑖 ∩ 𝑍𝑖 is of dimension at most 𝑑 and 𝑊𝑖+1 ∩ 𝑍+𝑖 is
of dimension less than 𝑑. Let 𝐶 be an irreducible component of 𝑊𝑖 ∩ 𝑍𝑖 with
generic point 𝜂. Then for a general point 𝑧 in 𝐶,

𝑎 ≤ mld𝜂 (𝑋𝑖 ,Δ𝑖) = mld𝑧 (𝑋𝑖 ,Δ𝑖) − dim𝐶 ≤ 𝑎 + 𝑑 − dim𝐶,

by which dim𝐶 ≤ 𝑑. In like manner for an irreducible component 𝐶+ of
𝑊𝑖+1 ∩ 𝑍+𝑖 with generic point 𝜂+,

𝑎 ≤ mld𝑍𝑖 (𝑋𝑖 ,Δ𝑖) < mld𝜂+ (𝑋𝑖+1,Δ𝑖+1) ≤ 𝑎 + 𝑑 − dim𝐶+

where the middle inequality follows as in Lemma 1.4.12. Thus dim𝐶+ < 𝑑.
Therefore𝑊𝑖 d 𝑊𝑖+1 is isomorphic outside loci in𝑊𝑖 and𝑊𝑖+1 of dimension

at most 𝑑 and it generates no new 𝑑-cycles on𝑊𝑖+1. Further by the definition of
𝑑, it really contracts a 𝑑-cycle for infinitely many 𝑖. One can find an irreducible
component of𝑊0 such that for the normalisation𝑉𝑖 of its strict transform in 𝑋𝑖 ,
the induced map 𝑉𝑖 d 𝑉𝑖+1 has the same properties as𝑊𝑖 d 𝑊𝑖+1 has, namely
the properties mentioned above. Write𝑉𝑖 → 𝑈𝑖 ← 𝑉𝑖+1 with the normalisation
𝑈𝑖 of the same image in 𝑌𝑖 of 𝑉𝑖 and 𝑉𝑖+1.

Step 4 This step follows [127]. We consider the Borel–Moore homology
𝐻BM

2𝑑 (𝑉𝑖) of 𝑉𝑖 as an analytic space [141, example 19.1.1]. Let Λ2𝑑 (𝑉𝑖) be the
subgroup of 𝐻BM

2𝑑 (𝑉𝑖) generated by algebraic 𝑑-cycles on 𝑉𝑖 . We also define
Λ2𝑑 (𝑈𝑖) ⊂ 𝐻BM

2𝑑 (𝑈𝑖) in the same manner.
Take the induced map

Λ2𝑑 (𝑉𝑖) � Λ2𝑑 (𝑈𝑖) ' Λ2𝑑 (𝑉𝑖+1),

where the isomorphism Λ2𝑑 (𝑉𝑖+1) ' Λ2𝑑 (𝑈𝑖) follows from that of 𝑉𝑖+1 → 𝑈𝑖

outside a locus in 𝑉𝑖+1 of dimension less than 𝑑. By the projectivity of 𝑉𝑖 ,
whenever 𝑉𝑖 → 𝑈𝑖 contracts a 𝑑-cycle, which occurs for infinitely many 𝑖, this
cycle generates a non-trivial sublattice Z in the kernel of Λ2𝑑 (𝑉𝑖) � Λ2𝑑 (𝑈𝑖).
Consequently the rank of Λ2𝑑 (𝑉𝑖) would drop infinitely many times. This is a
contradiction. �

The minimal log discrepancy can be described in terms of the arc space. We
quickly explain this when the variety is smooth.
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For any natural number 𝑖, the functor on the category of algebraic schemes
over an algebraically closed field 𝑘 which sends 𝑋 to 𝑋 × Spec 𝑘 [𝑡]/(𝑡𝑖+1) has
the right adjoint functor 𝐽𝑖 . A closed point in 𝐽𝑖𝑋 corresponds to a morphism
Spec 𝑘 [𝑡]/(𝑡𝑖+1) → 𝑋 . There exists a natural morphism 𝐽𝑖+1𝑋 → 𝐽𝑖𝑋 . Note
that 𝐽0𝑋 = 𝑋 . We define the arc space of 𝑋 as the inverse limit 𝐽∞𝑋 = lim←−−𝑖 𝐽𝑖𝑋 .
It is a noetherian scheme but not of finite type over Spec 𝑘 in general. A
closed point in 𝐽∞𝑋 corresponds to a morphism 𝛾 : Spec 𝑘 [[𝑡]] → 𝑋 from the
spectrum of the ring of formal power series. For a function 𝑓 in O𝑋 , the order
function 𝐽∞𝑋 → N ∪ {∞} is defined by sending 𝛾 to the order of 𝛾∗ 𝑓 in the
discrete valuation ring 𝑘 [[𝑡]].

Let 𝑋 be a smooth variety of dimension 𝑛. Then 𝐽𝑖+1𝑋 → 𝐽𝑖𝑋 is a vector
bundle of rank 𝑛. A subset 𝑆 of 𝐽∞𝑋 is called a cylinder if it is the inverse
image 𝜋−1

𝑖
(𝑆𝑖) by 𝜋𝑖 : 𝐽∞𝑋 → 𝐽𝑖𝑋 of a constructible subset 𝑆𝑖 of 𝐽𝑖𝑋 for some

𝑖, for which 𝑆𝑖 equals 𝜋𝑖 (𝑆). The dimension of 𝑆 is defined as

dim 𝑆 = dim 𝜋𝑖 (𝑆) − (𝑖 + 1)𝑛 ∈ Z

for any such 𝑖. An effective R-divisor Δ on 𝑋 defines the order function
ordΔ : 𝐽∞𝑋 → R≥0 ∪ {∞}, and the inverse image (ordΔ)−1 (𝑟) is a cylinder
in 𝐽∞𝑋 for all 𝑟 ∈ R≥0.

Theorem 1.6.7 (Ein–Mustaţă–Yasuda [117]) Let (𝑋,Δ) be a klt pair such
that 𝑋 is smooth and let𝑊 be a closed subset of 𝑋 . Then for a real number 𝑎,
mld𝑊 (𝑋,Δ) < 𝑎 if and only if there exists a non-negative real number 𝑟 such
that the cylinder (ordΔ)−1 (𝑟) ∩ 𝜋−1 (𝑊) in 𝐽∞𝑋 is of dimension greater than
−𝑟 − 𝑎, where 𝜋 denotes the projection 𝐽∞𝑋 → 𝑋 .

This was used to prove the lower semi-continuity of minimal log discrepan-
cies and the precise inversion of adjunction, a more precise version of Theo-
rem 1.4.26, on local complete intersection (lci) varieties.

Conjecture 1.6.8 (Precise inversion of adjunction) Let (𝑋,Δ) be a pair such
that 𝑆 = bΔc is reduced and normal. Let Δ𝑆 denote the different on 𝑆 of (𝑋,Δ).
Then mld𝑥 (𝑋,Δ) = mld𝑥 (𝑆,Δ𝑆) for any 𝑥 ∈ 𝑆.

Theorem 1.6.9 Conjecture 1.6.8 holds in the following cases.

(i) ([48]) (𝑋, 𝐵) is klt for some 𝐵, 𝑆 is Q-Cartier and mld𝑥 (𝑋,Δ) ≤ 1.
(ii) ([116], [117]) 𝑋 and 𝑆 are lci.

Whilst the ACC for minimal log discrepancies remains open, that for log
canonical thresholds has been established completely.
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Definition 1.6.10 Let (𝑋,Δ) be an lc pair and let 𝐴 be a non-zero effective
R-Cartier R-divisor on 𝑋 . The log canonical threshold of 𝐴 on (𝑋,Δ) is the
greatest real number 𝑡 such that (𝑋,Δ + 𝑡𝐴) is lc.

Theorem 1.6.11 (Hacon–McKernan–Xu [174]) Fix a positive integer 𝑛 and
a subset 𝐼 of the positive real numbers which satisfies the DCC. Then the set
of log canonical thresholds of 𝐴 on (𝑋,Δ) where 𝑋 is of dimension 𝑛 and the
coefficients in Δ and 𝐴 belong to 𝐼 satisfies the ACC.

The study of mld𝑥 (𝑋,Δ) of an lc pair pertains to the analysis of a divisor 𝐸
over 𝑋 which computes mld𝑥 (𝑋,Δ) in the sense that 𝑎𝐸 (𝑋,Δ) = mld𝑥 (𝑋,Δ)
with 𝑐𝑋 (𝐸) = 𝑥. The perspective of the above theorem tempts us to want 𝐴
such that 𝑎𝐸 (𝑋,Δ + 𝐴) = mld𝑥 (𝑋,Δ + 𝐴) = 0, but it is not always possible.

Example 1.6.12 ([229, example 2]) Consider 𝑜 ∈ 𝑋 = A2 with coordinates
𝑥1, 𝑥2. Let 𝐶 be the cuspidal curve in 𝑋 defined by 𝑥2

1 + 𝑥
3
2 and take the pair

(𝑋,Δ) with Δ = (2/3)𝐶. Let 𝑋1 be the blow-up of 𝑋 at 𝑜 and let 𝐸1 be the
exceptional curve. For 𝑖 = 2 and 3, let 𝑋𝑖 be the blow-up of 𝑋𝑖−1 at the point
at which the strict transform of 𝐶 meets 𝐸𝑖−1 and let 𝐸𝑖 be the exceptional
curve in 𝑋𝑖 . Then 𝑋3 is a log resolution of (𝑋,Δ) and 𝑎𝐸1 (𝑋,Δ) = 2/3,
𝑎𝐸2 (𝑋,Δ) = 1, 𝑎𝐸3 (𝑋,Δ) = 1. Thus 𝐸1 is a unique divisor over 𝑋 that computes
mld𝑜 (𝑋,Δ) = 2/3. If an effective R-divisor 𝐴 satisfies 𝑎𝐸1 (𝑋,Δ+ 𝐴) = 0, then
ord𝐸1 𝐴 = 𝑎𝐸1 (𝑋,Δ) = 2/3. Since ord𝐸3 𝐴 ≥ ord𝐸1 𝐴 · ord𝐸3 𝐸1 = (2/3) · 2 =

4/3, one has mld𝑜 (𝑋,Δ + 𝐴) ≤ 𝑎𝐸3 (𝑋,Δ + 𝐴) ≤ 1 − 4/3 < 0.

1.7 Abundance

Recall that a log minimal model is a Q-factorial lc pair (𝑋/𝑆,Δ) projective
over a variety such that 𝐾𝑋 + Δ is relatively nef. The log abundance is the
following generalisation of Conjecture 1.3.28. It is known up to dimension
three. We remark that the boundary Δ may be assumed to be a Q-divisor by the
rationality of Shokurov’s polytope in Remark 1.5.9.

Conjecture 1.7.1 (Log abundance) If (𝑋/𝑆,Δ) is a log minimal model, then
𝐾𝑋 + Δ is relatively semi-ample.

Theorem 1.7.2 (Keel–Matsuki–McKernan [250]) The log abundance in Con-
jecture 1.7.1 holds in dimension three.

We shall explain the reduction of the abundance to the equality of Kodaira
dimension 𝜅 and numerical Kodaira dimension 𝜈.
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Definition 1.7.3 Let 𝑋 be a normal complete variety and let 𝐷 be a Q-Cartier
Q-divisor on 𝑋 . The Iitaka dimension 𝜅(𝑋, 𝐷) of 𝐷 is defined as follows.
We define 𝜅(𝑋, 𝐷) = −∞ if 𝐻0 (O𝑋 (b𝑙𝐷c)) = 0 for all positive integers
𝑙. Otherwise we take the rational map 𝜑𝑙 : 𝑋 d P𝐻0 (O𝑋 (b𝑙𝐷c)) for each
𝑙 ∈ Z>0 such that 𝐻0 (O𝑋 (b𝑙𝐷c)) ≠ 0. There exists a contraction 𝜑′ : 𝑋 ′→ 𝑌 ′

with a birational contraction 𝜇 : 𝑋 ′ → 𝑋 such that for any sufficiently large
and divisible 𝑙, the rational map 𝑋 d 𝜑𝑙 (𝑋) to the image of 𝜑𝑙 is birational
to 𝜑′. Namely, 𝜑𝑙 ◦ 𝜇 = 𝑓𝑙 ◦ 𝜑′ for a birational map 𝑓𝑙 : 𝑌 ′ d 𝜑𝑙 (𝑋). We
define 𝜅(𝑋, 𝐷) to be the dimension of 𝑌 ′. Such 𝜑′ is called the Iitaka fibration
associated with 𝐷. Note that 𝜅(𝐹 ′, 𝜇∗𝐷 |𝐹 ′) = 0 for the fibre 𝐹 ′ of 𝜑′ at a very
general point in 𝑌 ′.

If 𝑋 is terminal, then we write 𝜅(𝑋) for 𝜅(𝑋, 𝐾𝑋 ) and call 𝜅(𝑋) the Ko-
daira dimension of 𝑋 . The Kodaira dimension is a birational invariant because
every proper birational morphism 𝜇 : 𝑋 ′ → 𝑋 of terminal varieties satisfies
𝜇∗O𝑋 ′ (𝑙𝐾𝑋 ′) = O𝑋 (𝑙𝐾𝑋 ) for all 𝑙 ≥ 0. The variety 𝑋 is said to be of general
type if the Kodaira dimension 𝜅(𝑋) equals the dimension of 𝑋 .

Standard references for Iitaka fibrations are [196, chapter 10], [334] and
[458]. The Iitaka dimension 𝜅(𝑋, 𝐷) is minus infinity or a natural number up
to the dimension of 𝑋 . It attains the dimension of 𝑋 if and only if 𝐷 is big. One
has 𝜅(𝑋, 𝐷) = 𝜅(𝑋, 𝑞𝐷) for any positive rational number 𝑞.

Theorem 1.7.4 (Easy addition) Let 𝑋 → 𝑌 be a contraction between normal
projective varieties and let 𝐹 be the general fibre. Let 𝐷 be a Cartier divisor
on 𝑋 . Then 𝜅(𝑋, 𝐷) ≤ 𝜅(𝐹, 𝐷 |𝐹 ) + dim𝑌 .

Proof We write 𝜅 = 𝜅(𝑋, 𝐷). The inequality is trivial if 𝜅 = −∞. If 𝜅 ≥ 0,
then 𝜅(𝐹, 𝐷 |𝐹 ) ≥ 0. In particular, the inequality is also evident when 𝜅 = 0. We
shall assume that 𝜅 ≥ 1. Take a positive integer 𝑙 such that 𝜑𝑙 : 𝑋 d 𝜑𝑙 (𝑋) ⊂
𝑃 = P𝐻0 (O𝑋 (𝑙𝐷)) is birational to the Iitaka fibration associated with 𝐷.

Let 𝑍 be the image of the rational map 𝑋 d 𝑃×𝑌 defined by 𝜑𝑙 and 𝑋 → 𝑌 .
The first projection 𝑍 → 𝜑𝑙 (𝑋) is surjective, by which the dimension 𝜅 of
𝜑𝑙 (𝑋) satisfies

𝜅 ≤ dim 𝑍 = dim 𝑍𝑦 + dim𝑌

for the general fibre 𝑍𝑦 = 𝑍 ×𝑌 𝑦 at the image 𝑦 in 𝑌 of 𝐹. Let 𝑉 be the image
of the restriction map 𝐻0 (O𝑋 (𝑙𝐷)) → 𝐻0 (O𝐹 (𝑙𝐷 |𝐹 )). Then 𝑍𝑦 ⊂ P𝑉 ⊂ 𝑃,
and for the rational map 𝜑𝐹𝑙 : 𝐹 d 𝑃𝐹 = P𝐻0 (O𝐹 (𝑙𝐷 |𝐹 )) given by 𝑙𝐷 |𝐹 , the
projection 𝑃𝐹 d P𝑉 induces a dominant map 𝜑𝐹𝑙 (𝐹) d 𝑍𝑦 . Hence

dim 𝑍𝑦 ≤ dim 𝜑𝐹𝑙 (𝐹) ≤ 𝜅(𝐹, 𝐷 |𝐹 ).

These two inequalities are combined into the one in the theorem. �
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Iitaka originally defined 𝜅(𝑋, 𝐷) as the order of growth of ℎ0 (O𝑋 (b𝑙𝐷c)) as
below. The proof is found in [196, theorem 10.2] and [288, corollary 2.1.38].

Theorem 1.7.5 Let 𝐷 be a Cartier divisor on a normal complete variety 𝑋
and let 𝜅 = 𝜅(𝑋, 𝐷). Then there exist a positive integer 𝑙0 and positive real
numbers 𝑎 and 𝑏 such that 𝑎𝑙𝜅 ≤ ℎ0 (O𝑋 (𝑙𝑙0𝐷)) ≤ 𝑏𝑙𝜅 for all 𝑙 ∈ Z>0.

Definition 1.7.6 Let 𝑋 be a normal complete variety and let 𝐷 be a nef Q-
Cartier Q-divisor on 𝑋 . The numerical Iitaka dimension 𝜈(𝑋, 𝐷) of 𝐷 is the
maximal number 𝜈 such that 𝐷𝜈 . 0, that is, (𝐷𝜈 · 𝑍) ≠ 0 for some 𝜈-cycle 𝑍 .
We define 𝜈(𝑋, 𝐷) = 0 if 𝐷 ≡ 0. If 𝑋 is terminal and 𝐾𝑋 is nef, then we write
𝜈(𝑋) for 𝜈(𝑋, 𝐾𝑋 ) and call 𝜈(𝑋) the numerical Kodaira dimension of 𝑋 .

The numerical Iitaka dimension 𝜈(𝑋, 𝐷) is a natural number up to the
dimension of 𝑋 . The intersection number (𝐷𝑛) of the nef Q-divisor 𝐷, where
𝑛 is the dimension of 𝑋 , is the volume of 𝐷.

Definition 1.7.7 Let 𝑋 be a normal complete variety of dimension 𝑛. The
volume of a Cartier divisor 𝐷 on 𝑋 is the non-negative real number

vol(𝐷) = lim sup
𝑙→∞

ℎ0 (O𝑋 (𝑙𝐷))
𝑙𝑛/𝑛! .

The volume of a Q-Cartier Q-divisor 𝐷 is defined as 𝑎−𝑛 vol(𝑎𝐷) by a positive
integer 𝑎 such that 𝑎𝐷 is integral and Cartier. By Theorem 1.7.5, 𝐷 has positive
volume if and only if 𝐷 is big. The volume vol(𝐷) is actually defined by the
numerical equivalence class of 𝐷 and it extends to a continuous function
vol : 𝑁1 (𝑋) → R≥0. Refer to [288, subsection 2.2.C] for the proof.

Example 1.7.8 Cutkosky and Srinivas [99, example 4] constructed an explicit
example of a divisor with irrational volume. Let 𝑆 = 𝐶 × 𝐶 be the product of
an elliptic curve𝐶. Let Δ be the diagonal on 𝑆 and let 𝐴 = 𝑜×𝐶 and 𝐵 = 𝐶 × 𝑜
by a point 𝑜 in 𝐶. Take the P1-bundle 𝜋 : 𝑋 = P(O𝑆 (−𝐴 − 𝐵 − Δ) ⊕ O𝑆) → 𝑆.
The projection O𝑆 (−𝐴 − 𝐵 − Δ) ⊕ O𝑆 � O𝑆 (−𝐴 − 𝐵 − Δ) gives a section
𝑆 in 𝑋 with O𝑋 (𝑆) ' O𝑋 (1). They computed the volume of the divisor
𝐷 = 2𝑆 + 𝜋∗ (𝐴 + 2𝐵 + 3Δ) as vol(𝐷) = 36 + 4/

√
3.

Lemma 1.7.9 Let 𝑋 be a normal complete variety of dimension 𝑛 and let
𝐷 be a nef Q-Cartier Q-divisor on 𝑋 . Then 𝜅(𝑋, 𝐷) ≤ 𝜈(𝑋, 𝐷). Moreover,
𝜅(𝑋, 𝐷) = 𝑛 if and only if 𝜈(𝑋, 𝐷) = 𝑛, and vol(𝐷) = (𝐷𝑛) in this case.

Proof We write 𝜅 = 𝜅(𝑋, 𝐷) and 𝜈 = 𝜈(𝑋, 𝐷). By Chow’s lemma and
Hironaka’s resolution, we have a resolution 𝜇 : 𝑋 ′ → 𝑋 such that 𝑋 ′ is pro-
jective. Replacing 𝑋 by 𝑋 ′ and 𝐷 by 𝑙𝜇∗𝐷 for suitable 𝑙, we may and shall
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assume that 𝑋 is a smooth projective variety and 𝐷 is a Cartier divisor such
that 𝜑 : 𝑋 d 𝜑(𝑋) ⊂ 𝑃 = P𝐻0 (O𝑋 (𝐷)) is birational to the Iitaka fibration
associated with 𝐷. Resolving 𝜑, we may assume that it is a morphism 𝑋 → 𝑃.

One can write 𝐷 = 𝜑∗𝐻 + 𝐸 with a hyperplane 𝐻 in 𝑃 and an effective
divisor 𝐸 on 𝑋 . Take an ample divisor 𝐴 on 𝑋 . Since 𝐷 is nef, one has

0 < (𝜑∗𝐻𝜅 · 𝐴𝑛−𝜅 ) ≤ (𝜑∗𝐻𝜅−1 · 𝐷𝐴𝑛−𝜅 ) ≤ · · · ≤ (𝐷𝜅 𝐴𝑛−𝜅 ),

which implies that 𝐷𝜅 . 0. Thus 𝜅 ≤ 𝜈.
Suppose that 𝜈 = 𝑛. We take as 𝐴 the general hyperplane section of 𝑋 such

that 𝐴 − 𝐾𝑋 is ample. By Kleiman’s criterion, 𝑙𝐷 + 𝐴 − 𝐾𝑋 is ample for any
𝑙 ≥ 0 and hence 𝐻𝑖 (O𝑋 (𝑙𝐷 + 𝐴)) = 0 for all 𝑖 ≥ 1 by Kodaira vanishing.
Thus ℎ0 (O𝑋 (𝑙𝐷 + 𝐴)) = 𝜒(O𝑋 (𝑙𝐷 + 𝐴)), which is the sum of 𝜒(O𝑋 (𝑙𝐷))
and 𝜒(O𝐴((𝑙𝐷 + 𝐴) |𝐴)). The first summand 𝜒(O𝑋 (𝑙𝐷)) is expressed as 𝑐𝑙𝑛 +
𝑂 (𝑙𝑛−1) with 𝑐 = (𝐷𝑛)/𝑛! > 0 by the asymptotic Riemann–Roch theorem.
The second is 𝑂 (𝑙𝑛−1) by an application of Grothendieck’s dévissage. Hence
ℎ0 (O𝑋 (𝑙𝐷 + 𝐴)) = 𝑐𝑙𝑛 + 𝑂 (𝑙𝑛−1). With ℎ0 (O𝐴((𝑙𝐷 + 𝐴) |𝐴)) = 𝑂 (𝑙𝑛−1), the
exact sequence

0→ 𝐻0 (O𝑋 (𝑙𝐷)) → 𝐻0 (O𝑋 (𝑙𝐷 + 𝐴)) → 𝐻0 (O𝐴((𝑙𝐷 + 𝐴) |𝐴))

yields ℎ0 (O𝑋 (𝑙𝐷)) = 𝑐𝑙𝑛 + 𝑂 (𝑙𝑛−1). Then 𝜅 = 𝑛 by Theorem 1.7.5, and
vol(𝐷) = 𝑛! · 𝑐 = (𝐷𝑛). �

The inequality 𝜅(𝑋, 𝐷) ≤ 𝜈(𝑋, 𝐷) is not an equality in general. For instance,
the divisor 𝐷 ≡ 0 on a curve 𝐶 of positive genus in Example 1.2.20 has
𝜅(𝐶, 𝐷) = −∞ but 𝜈(𝐶, 𝐷) = 0. On the other hand if 𝐷 is semi-ample, then
𝜅(𝑋, 𝐷) = 𝜈(𝑋, 𝐷) since a multiple of 𝐷 is the pull-back of an ample divisor.
Thus the abundance includes the following conjecture.

Definition 1.7.10 Let 𝑋 be a normal complete variety. We say that a nef
Q-Cartier Q-divisor 𝐷 on 𝑋 is abundant if 𝜅(𝑋, 𝐷) = 𝜈(𝑋, 𝐷).

Conjecture 1.7.11 Let (𝑋,Δ) be a log minimal model such that Δ is a Q-
divisor. Then 𝐾𝑋 + Δ is abundant.

Kawamata [234] derived the abundance from the corresponding statement
of this conjecture. This was generalised logarithmically and relatively by
Nakayama [367, theorem 5] and reproved in [130].

Theorem 1.7.12 (Kawamata) Let (𝑋/𝑆,Δ) be a klt pair such that 𝑋 → 𝑆

has connected fibres and Δ is a Q-divisor. If 𝐾𝑋 + Δ is relatively nef and the
restriction (𝐾𝑋 +Δ) |𝐹 to the general fibre 𝐹 of 𝑋 → 𝑆 is abundant, then 𝐾𝑋 +Δ
is relatively semi-ample.
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The base-point free theorem provides the log abundance for a klt log minimal
model (𝑋/𝑆,Δ) such that 𝐾𝑋 +Δ is relatively big. In view of Lemma 1.7.9, this
amounts to the case when the numerical Iitaka dimension 𝜈 is maximal. We
also have the log abundance at the opposite extreme when 𝜈 is zero as stated
below, proved by Nakayama [369, V theorem 4.8] for klt pairs and extended to
lc pairs in [65], [144], [247]. This is formulated without the minimality of the
pair.

Theorem 1.7.13 Let (𝑋,Δ) be an lc projective pair such thatΔ is a Q-divisor.
Suppose that 𝐾𝑋 + Δ is pseudo-effective and for any ample Cartier divisor 𝐴
on 𝑋 , there exists a constant 𝑐 such that ℎ0 (O𝑋 (b𝑙 (𝐾𝑋 + Δ)c + 𝐴)) ≤ 𝑐 for
all positive 𝑙. Then 𝜅(𝑋, 𝐾𝑋 + Δ) = 0. In particular if (𝑋,Δ) is a log minimal
model with 𝜈(𝑋, 𝐾𝑋 + Δ) = 0, then 𝜅(𝑋, 𝐾𝑋 + Δ) = 0 and 𝐾𝑋 + Δ ∼Q 0.

Definition 1.7.14 Let (𝑋/𝑆,Δ) be an lc pair projective over a variety such
that 𝐾𝑋 + Δ is relatively pseudo-effective. We say that a log minimal model
(𝑌/𝑆, Γ) of (𝑋/𝑆,Δ) is good if 𝐾𝑌 +Γ is relatively semi-ample. If (𝑋/𝑆,Δ) has
a good log minimal model, then by Corollary 1.5.7, every log minimal model
of (𝑋/𝑆,Δ) is good.

We shall explain Lai’s inductive approach to the abundance in the case when
the Iitaka dimension is non-negative. Let (𝑋,Δ) be a klt projective pair such
that Δ is a Q-divisor. Suppose that 𝜅(𝑋, 𝐾𝑋 + Δ) ≥ 0. Take a log resolution
𝜇 : 𝑋 ′ → 𝑋 which admits the Iitaka fibration 𝜑′ : 𝑋 ′ → 𝑌 ′ associated with
𝐾𝑋 +Δ. One has a klt pair (𝑋 ′,Δ′) with a Q-divisor Δ′ such that 𝜇∗Δ′ = Δ and
such that 𝜇 is (𝐾𝑋 ′ + Δ′)-negative. Namely, 𝐾𝑋 ′ + Δ′ = 𝜇∗ (𝐾𝑋 + Δ) + 𝑃 with
an effective Q-divisor 𝑃 the support of which equals the 𝜇-exceptional locus.
Then by Proposition 1.5.6, every log minimal model of (𝑋,Δ) is a log minimal
model of (𝑋 ′,Δ′) and vice versa. By the following theorem, (𝑋,Δ) has a good
log minimal model if so does the restriction (𝐹,Δ′ |𝐹 ) to the very general fibre
of 𝜑′, where Δ′ |𝐹 can be defined since 𝐹 meets the singular locus of 𝑋 ′ in
codimension at least two in 𝐹.

Theorem 1.7.15 (Lai [282]) Let (𝑋,Δ) be a klt projective pair such that Δ is
a Q-divisor. Suppose that 𝜅(𝑋, 𝐾𝑋 + Δ) ≥ 0 and 𝑋 admits the Iitaka fibration
𝜑 : 𝑋 → 𝑌 associated with 𝐾𝑋 + Δ. Let 𝐹 be the very general fibre of 𝜑. If the
klt pair (𝐹,Δ|𝐹 ) has a good log minimal model, then so does (𝑋,Δ).

Thus by induction on dimension, the abundance for a klt projective pair
(𝑋,Δ) with 𝐾𝑋 + Δ nef is reduced to the two statements which are

• the non-vanishing 𝜅(𝑋, 𝐾𝑋 + Δ) ≥ 0 and
• the implication from 𝜈(𝑋, 𝐾𝑋 + Δ) ≥ 1 to 𝜅(𝑋, 𝐾𝑋 + Δ) ≥ 1.
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The proof of Theorem 1.7.15 uses the next application [282, proposition 2.7]
of the work of Birkar, Cascini, Hacon and McKernan.

Proposition 1.7.16 Let (𝑋/𝑆,Δ) be a Q-factorial klt pair with a contraction
𝑋 → 𝑆. Suppose that the restriction (𝐹,Δ|𝐹 ) to the very general fibre 𝐹 of
𝑋 → 𝑆 has a good log minimal model. Then after finitely many steps in the
(𝐾𝑋 + Δ)/𝑆-MMP with scaling, one attains a Q-factorial klt pair (𝑋 ′/𝑆,Δ′)
such that the restriction (𝐹 ′,Δ′ |𝐹 ′) to the very general fibre 𝐹 ′ of 𝑋 ′ → 𝑆 has
semi-ample 𝐾𝐹 ′ + Δ′ |𝐹 ′ .

Proof of Theorem 1.7.15 The Iitaka dimension 𝜅 = 𝜅(𝑋, 𝐾𝑋 + Δ) equals the
dimension of 𝑌 . The assertion is trivial if 𝜅 = 0 in which 𝐹 = 𝑋 . If 𝜅 equals
the dimension of 𝑋 , then the theorem follows from Corollary 1.5.14. We shall
assume that 1 ≤ 𝜅 < dim 𝑋 . By Q-factorialisation in Proposition 1.5.17, 𝑋
may be assumed to be Q-factorial.

Step 1 There exists a positive integer 𝑙 such that 𝑙 (𝐾𝑋 + Δ) is integral and
such that 𝑙 (𝐾𝑋 + Δ) = 𝜑∗𝐴 + 𝐺 with a hyperplane section 𝐴 of 𝑌 and the fix
part 𝐺 of 𝑙 (𝐾𝑋 + Δ). Applying Proposition 1.7.16 to 𝜑 and replacing 𝑋 , we
may assume that 𝐾𝐹 + Δ|𝐹 is semi-ample. Then 𝐺 |𝐹 ∼ 𝑙 (𝐾𝐹 + Δ|𝐹 ) ∼Q 0 by
𝜅(𝐹, 𝐾𝐹 + Δ|𝐹 ) = 0. Hence 𝐺 |𝐹 = 0. In other words, 𝐺 does not dominate 𝑌 .
It suffices to derive the equality 𝐺 = 0.

The reduction above is made by running the (𝐾𝑋 + Δ)/𝑌 ≡𝑌 𝑙−1𝐺-MMP
with scaling of some big 𝐻. After further replacement of 𝑋 , we may assume
that this MMP no longer contracts any divisors on 𝑋 . Then for any 𝜀 ∈ Q>0,
a multiple of 𝐺 + 𝜀𝐻 is mobile over 𝑌 . Indeed thanks to Corollary 1.5.13, the
(𝐾𝑋 +Δ)/𝑌 -MMP with scaling of 𝐻 produces a log minimal model (𝑋 ′/𝑌,Δ′+
𝑙−1𝜀𝐻 ′) of (𝑋/𝑌,Δ+ 𝑙−1𝜀𝐻). By the base-point free theorem, the big Q-divisor
𝐾𝑋 ′ + Δ′ + 𝑙−1𝜀𝐻 ′ is semi-ample over 𝑌 . This implies the relative mobility of
a multiple of 𝐾𝑋 + Δ + 𝑙−1𝜀𝐻 ∼Q,𝑌 𝑙−1 (𝐺 + 𝜀𝐻) because the rational map
𝑋 d 𝑋 ′ is small by assumption.

Step 2 Let 𝐸 be a prime component of 𝐺. If the image 𝑃 = 𝜑(𝐸) were
of codimenison at least two in 𝑌 , then as in the proof of Theorem 1.3.9, we
would construct a birational contraction 𝜑 |𝑆 : 𝑆 → 𝑇 from a normal surface by
taking the base change to the intersection 𝑇 of general hyperplane sections of
𝑌 and cutting it with general hyperplane sections of 𝑋 . Then 𝐺 |𝑆 is a non-zero
exceptional divisor on 𝑆/𝑇 . By the negativity lemma, 𝐺 |𝑆 is not 𝜑|𝑆-nef and
hence contains a curve 𝐶 with (𝐺 · 𝐶) < 0. Curves 𝐶 realised in this manner
cover some divisor 𝐸 ′ on 𝑋 with 𝜑(𝐸 ′) = 𝑃. They have ((𝐺 + 𝜀𝐻) · 𝐶) < 0
for small positive 𝜀, contradicting the relative mobility in Step 1.
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Thus 𝑃 = 𝜑(𝐸) is a prime divisor on 𝑌 . Using Step 1 in like manner, one
can also verify that 𝐺 |𝜑−1 (𝑈 ) is proportional to the pull-back 𝜑∗𝑃 |𝑈 restricted
to some smooth neighbourhood𝑈 in 𝑌 at the generic point of 𝑃.

Step 3 By Theorem 1.5.16, we may choose 𝑙 so that 𝑗𝐺 is the fix part of
𝑗𝜑∗𝐴 + 𝑗𝐺 for all 𝑗 ≥ 0. Then for any 0 ≤ 𝑖 ≤ 𝑗 ,

𝐻0 (O𝑋 ( 𝑗𝜑∗𝐴)) = 𝐻0 (O𝑋 ( 𝑗𝜑∗𝐴 + 𝑖𝐺)) = 𝐻0 (O𝑌 ( 𝑗 𝐴) ⊗ 𝜑∗O𝑋 (𝑖𝐺)).

Thus for 0 ≤ 𝑖 < 𝑗 , the quotient Q𝑖 = 𝜑∗O𝑋 ((𝑖 + 1)𝐺)/𝜑∗O𝑋 (𝑖𝐺) satisfies the
inclusion

𝐻0 (O𝑌 ( 𝑗 𝐴) ⊗Q𝑖) ⊂ 𝐻1 (O𝑌 ( 𝑗 𝐴) ⊗ 𝜑∗O𝑋 (𝑖𝐺)).

Given 𝑖 ≥ 0, whenever 𝑗 is sufficiently large, O𝑌 ( 𝑗 𝐴) ⊗ Q𝑖 is generated by
global sections and 𝐻1 (O𝑌 ( 𝑗 𝐴) ⊗ 𝜑∗O𝑋 (𝑖𝐺)) = 0. Hence Q𝑖 = 0 from the
above inclusion. It follows that O𝑌 = 𝜑∗O𝑋 (𝑖𝐺) for all 𝑖 ≥ 0.

If 𝐺 ≠ 0 and has a component 𝐸 , then by Step 2, 𝑃 = 𝜑(𝐸) is a divisor and
there exists a smooth open subset 𝜄 : 𝑈 ↩→ 𝑌 such that the complement 𝑌 \𝑈 is
of codimension at least two and such that 𝜑∗𝑃 |𝑈 ≤ 𝑖𝐺 |𝜑−1 (𝑈 ) for some 𝑖 ≥ 1.
But then

O𝑌 (𝑃) = 𝜄∗O𝑈 (𝑃 |𝑈 ) ⊂ 𝜄∗ (𝜑∗O𝑋 (𝑖𝐺)) |𝑈 = 𝜄∗O𝑈 = O𝑌 ,

which is absurd. Thus 𝐺 must be zero. �

The existence of good minimal models includes the Iitaka conjecture. Below
we chronicle several known results. The case (iv) contains (i) and now also
contains (v) by Corollary 1.5.14.

Conjecture 1.7.17 (Iitaka conjecture 𝐶𝑛,𝑚) Let 𝑋 → 𝑌 be a contraction
between smooth projective varieties, where 𝑋 and 𝑌 are of dimension 𝑛 and 𝑚
respectively, and let 𝐹 be the very general fibre. Then 𝜅(𝑋) ≥ 𝜅(𝐹) + 𝜅(𝑌 ).

Theorem 1.7.18 Conjecture 1.7.17 holds in the following cases.

(i) (𝐶𝑛,𝑛−1, Viehweg [460]) 𝐹 is a curve.
(ii) (𝐶𝑛,1, Kawamata [231]) 𝑌 is a curve.
(iii) (Viehweg [462], [464, corollary IV]) 𝑌 is of general type.
(iv) (Kawamata [233]) 𝐹 has a good minimal model.
(v) (Kollár [261]) 𝐹 is of general type.
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