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Fundamental Concepts

1.1 Introduction

This chapter first reviews the linear first-order nonhomogeneous ordinary differential
equation. An introduction to statistics and stochastic processes follows. Afterward,
this chapter explains the stochastic fluid continuum concept and associated control
volume, spatial- and ensemble-representative control volume concepts. It then uses
the well-known solute concentration definition as an example to elucidate the
volume- and spatial-, ensemble-average, and ergodicity concepts. This chapter
provides the basic math and statistics knowledge necessary to comprehend the
themes of this book. Besides, this chapter’s homework exercises demonstrate the
power of the widely available Microsoft Excel for scientific investigations.

1.2 Linear First-Order Nonhomogeneous Ordinary Differential Equation

Sincemany chapters andhomework assignments use the first-order ordinarydifferential
equation and its solution technique, we will briefly review a simple solution below.
A revisit to calculus or an introduction to the differential equation would be helpful.

Consider an ordinary differential equation that has a form:

dC

dt
þ f tð ÞC ¼ r tð Þ (1.2.1)

where r tð Þ 6¼ 0. It has the general solution:

C tð Þ ¼ e�h
ð
ehr tð Þdt þ A

� �
(1.2.2)

where h ¼ Ð
f tð Þdt. Since t is time, the differential equation is called an initial value

problem (also called the Cauchy problem). If t is a spatial coordinate, the math-
ematical problem is called a boundary value problem.
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Consider the following ordinary differential equation,

dC

dt
� C ¼ e2t: (1.2.3)

Comparing Eq. (1.2.3) with Eq. (1.2.1), we see f(t) = –1, r(t) = e2t, and
h ¼ Ð �1ð Þdt ¼ �t in Eq. (1.2.2). Substituting these relationships into Eq.
(1.2.2), we have the general solution for the ordinary differential equation,

C tð Þ ¼ et
ð
e�te2tdt þ A

� �

¼ et
ð
etdt þ A

� �

¼ et et þ A½ � ¼ e2t þ Aet

(1.2.4)

in which A can be determined if an initial condition is specified. Otherwise, the
problem is not well defined, and many possible solutions exist. As an example,
given that C at t = 0 is C0, we find that A = C0 – 1. As a result, a particular solution
(unique solution) for this initial condition is

C tð Þ ¼ e2t þ C0 � 1ð Þet: (1.2.5)

1.2.1 Homework

1. Find the general solutions of the following differential equations

aÞ dy

dt
� y ¼ 3, bÞ dy

dt
þ 2y ¼ 6et, cÞ dy

dt
þ y ¼ sin tð Þ: (1.2.6)

2. Derive the analytical solution to the initial value problem

dy

dt
þ y ¼ t þ 1ð Þ2, y 0ð Þ ¼ 0: (1.2.7)

3. Evaluate the analytical solution of problem 2 and plot y as a function of t.

1.3 Random Variable

A random, aleatory, or stochastic variable is a quantity whose outcome is
unpredictable or unknown, although anything can be viewed as random, as
explained later. A mathematical treatment of random variables is the probability, an
abstract statement about the likelihood of something happening or being the case.
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Suppose we take a bottle of lake water to determine the chloride concentration
(C0). While the concentration may have a range of possible values (e.g., 0–1000
ppm), within this range, the exact value is unknown until measured. The
concentration C0 thus is conceptualized as a random variable to express our
uncertainty about the concentration.

Similarly, repeated measurements of the concentration may yield a distribution of
values due to the experimental error. If the measurement is precise, all the values are
very close. If not, the values may be widely spread. Such a spread distribution of
replicates often assesses the measurement method’s precision or accuracy (an
expression of our uncertainty about themeasurement). In this case, theC0 is a random
variable, expressing our uncertainty about the instrument’s measurement.

The above examples immediately lead to the notion that if the concentration is
measured precisely (error-free), the concentration is a deterministic variable, not a
random variable. However, this notion may not be necessary. Any precisely known,
determined, or measured event is always an outcome of many possible events that
could have occurred. For example, the head resulting from flipping a coin is
undoubtedly a deterministic outcome since it has happened. On the other hand, it is
the outcome of a random variable consisting of two possibilities (head or tail) – a
flipping coin experiment. In this sense, everything that happened is the outcome of a
random event. This thinking leads to probabilistic science (i.e., statistics).

In statistics, the set of all possible values of C0 of the water sample is a
population. This population could be a hypothetical and potentially infinite group
of C0 values conceived as a generalization from our knowledge. The likelihood of
taking a value from the population is then viewed as chance or probability.
Therefore, C0 is a random variable with a probability distribution that describes
all the possible values and likelihoods being sampled.

The random variable can be discrete or continuous. A discrete random variable
has a specified finite or countable list of values (having a countable range). Typical
examples of discrete random variables are the outcome of flipping a coin, throwing
dice, or drawing lottery numbers. On the other hand, a continuous random variable
has an uncountable list of values. For instance, the porosity of a porous medium,
chloride concentration in the water, or any variables in science is a continuous
random variable because it has a continuous spectrum of values rather than a
countable list of values. Of course, we could approximate the continuous random
variable using the discrete random variable by grouping them into a countable list.

In the discrete case, we can determine the probability of a random variable X
equal to a given value x (i.e., P(X = x)) from all possible values of X. The set of all
the possible values is the probability mass function (PMF). On the other hand, in
the continuous random variable case, the probability that X is any particular value
x is 0 since the random variable value varies indefinitely. In other words, finding
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P(X = x) for a continuous random variable X is meaningless. Instead, we find the
probability that X falls in some interval (a, b) – we find P(a < X < b) by using a
probability density function (PDF).

The porosity of a sandstone formation is an excellent example to elucidate the
PDF. Suppose the sandstone formation’s porosity is reported to be 0.3. Intuition
tells us that every sample taken from the formation will not be precisely 0.3.
For example, randomly selecting a sandstone sample may sometimes find the
porosity is 0.27 and others are not. We then ask the probability of a randomly
selected sandstone having a porosity value between 0.25 and 0.35. That is to say, if
we let X denote a randomly selected sandstone’s porosity, we like to determine
P(0.25 < X < 0.35).

Consider that we randomly select 100 core samples from the sandstone,
determine their porosity, and create a histogram of the resulting porosity values
(Fig. 1.1). This histogram describes the distribution of the number of samples in
each range of porosity value (i.e., several bins or classes: 0–0.1, 0.1–0.2, and so
on). As indicated in Fig. 1.1, most samples have a value close to 0.3; some are a bit
more and some a bit less. This histogram illustrates that arbitrarily taking a core
sample will likely have a sample with a porosity of 0.3. Alternatively, if we
repeatedly take a sample from the 100 cores, we will get a core with a porosity of
0.3 most of the time. However, a probability of any particular value (e.g., 60%)
does not guarantee that we will get 60 core samples with a porosity value of 0.3
after picking a sample over 100 times. This probability is merely an abstract
concept that quantifies the chance that some event might happen.

Figure 1.1 The histogram for the porosity value of a sandstone.
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Now, we decrease the interval to an infinitesimally small point. X’s probability
distribution becomes a curve like in Fig. 1.2, denoted as f xð Þ and called a
probability density function. It shows that the porosity value varies continuously
from 0 to 0.7. Notice that the density function could have a value greater than 1, as
the histogram could have.

A density histogram is defined as the area of each rectangle equals the
corresponding class’s relative frequency, and the entire histogram’s area equals 1.
That suggests that finding the probability that a continuous random variable X falls
in some interval of values is finding the area under the curve f xð Þ bounded by the
endpoints of the interval. In this example, the probability of a randomly selected
core sample having a porosity value between 0.20 and 0.30 is the area between the
two values. A formal definition of the probability density function of a random
variable is given below.

Definition. The probability density function (PDF) of a continuous random
variable X is an integrable function f xð Þ satisfying the following:

(1) f xð Þ > 0, for all x.
(2) The area under the curve f xð Þ is 1, that is:

ð∞

�∞

f xð Þdx ¼ 1 (1.3.1)

(3) The probability that x in a bin or class, say, 0:3 < x < 0:4, is given by the
integral of f xð Þ over that interval:

Figure 1.2 An illustration of a density function. The vertical axis is the density, and
the horizontal axis is the porosity value.
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P 0:3 < x < 0:4ð Þ ¼
ð0:4

0:3

f xð Þdx: (1.3.2)

Again, notice that a probability density function, the number of occurrences of a
value x and can be greater than 1, is not a probability.

A widely used PDF is

f xð Þ ¼ 1

σx
ffiffiffiffiffiffi
2π

p exp � x� μxð Þ2
2σ2

x

� �
: (1.3.3)

This PDF describes a normally distributed random variable X. In the equation, x is
the random variable value, μx is the mean (i.e., the most likely) value of all x values,
and σ2x is the variance, indicating the likely deviation of x from the mean. Because
the random variable has a normal (Gaussian) distribution, it has symmetric and
bell-shaped distribution (Fig. 1.3). Thus, the mean and variance fully characterize a
random variable with a normal distribution, as indicated by the equation. For this
reason, most statistical analyses assume that random variables have a normal
distribution, attributing to the mathematical simplicity of Eq. (1.3.3). As PDF
is an abstract concept, we never have an infinite number of samples to
disapprove of it.

Frequency distribution: A frequency distribution is a table or a graph (e.g., a
histogram) that displays a summarized grouping of data divided into mutually
exclusive classes and the number of occurrences in a class. It becomes a relative
frequency distribution if the total number of samples in all classes normalizes
the frequency.

Figure 1.3 A schematic illustration of the histogram and the normal distribution.
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Probability distribution: A probability distribution is a mathematical function
that produces probabilities of different possible outcomes for an experiment and is
an alias for relative frequency distribution.

Cumulative distribution function (CDF): A CDF is a mathematical functional
form describing a probability distribution. For example, the cumulative
distribution function of a real-valued random variable X, or just distribution
function of X, evaluated at x, is the probability that X will take a value less than or
equal to x.

Distribution Parameters: The following definitions are theoretical, based on
an infinitely large population.

Mean E X½ � ¼ μx ¼
ð∞

�∞

xf X xð Þdx (1.3.4)

where X is the random variable name and x represents the values of the random
variable. f X xð Þ denotes the probability density function (PDF) of the random
variable, X. E represents the expected value (an average over the infinitely large
population). The mean represents the most likely value of the random variable, for
example, the average value of the porosity of a sandstone formation.

The variance, a measure of the spread of the distribution, is defined as

Variance σ2
x ¼ E X� μxð Þ2

h i
¼

ð∞

�∞

x� μxð Þ2f X xð Þdx (1.3.5)

The standard deviation is the square root of the variance, the most likely
deviation of the random variable value from its mean value. For example, it is
often used to construct the upper or lower bound of the sandstone’s
porosity value.

While X is used to represent the random variable, and x is the value of the
random variable, we use x for both most of the time.

Sample Statistics

Only a finite population and discrete random variables are available in practice.
The statistics calculated from these samples are called sample statistics.

Suppose we have samples from I = 1 to N, where N is the total number of
samples. The sample mean is calculated as

x ¼ 1
N

XN
i¼1

xi: (1.3.6)
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The sample variance is given as

S2 ¼ 1
N � 1

XN
i¼1

xi � xð Þ2: (1.3.7)

Eq. (1.3.7) uses N� 1 to make the estimate unbiased. If N is large, this correction is
unnecessary. Besides, how large N is sufficiently large is undetermined since we do
not know the population’s size. Likewise, the normal PDF is widely used in many
fields because of its mathematical simplicity and insufficient datasets to verify or
disapprove the distribution. The following central limit theorem further supports
this approach.

The Central Limit Theorem (CLT)

As a statistical premise, CLT states that when independent random variables are
lumped together after being properly normalized, their distribution tends toward a
normal distribution even if the original variables are not normally distributed. The
central limit theorem has several variants. In its typical form, the random variables
must be identically distributed. In variants, the convergence of the mean to the
normal distribution also occurs for non-identical distributions or for non-
independent observations. This theorem is a key in probability theory because it
implies that probabilistic and statistical methods that work for normal distributions
can apply to many problems involving other types of distributions.

1.4 Stochastic Process or Random Field

Instead of considering a variable, we often simultaneously consider many variables
in time or space, leading to the adoption of the stochastic process or field concept.
Formally, a stochastic process is a collection of an infinite number of random
variables in space or time. Examples are the spatial distribution of porosity or
hydraulic conductivity in a geologic formation or the spatial and temporal
distribution of a lake’s chemical concentration.

Consider a temporally varying concentration, C(x,t), at a point, x, in space at the
time t1. If the concentration is not measured, and we guess it, we inevitably
consider the concentration a random variable characterized by a probability
distribution (PDF). If we guess the C at the time t2, we again consider it a random
variable at t2. Guessing the concentration at that location for a period is treating the
concentration as a stochastic process over time.

As articulated in the flipping coin experiment, we can conceive any known or
deterministic event as a random event. Accordingly, a recorded concentration
history at a location that has occurred (or deterministic in conventional thinking) in
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time and space is a stochastic process or stochastic field. While this concept may
be difficult to accept based on the conventional sense, it should become apparent
as we apply it to many situations discussed in the book. The fact is that the
stochastic process concept is abstract and exists in our imaginary space.

An observed record of concentration history at a location can be considered a
stochastic process, consisting of infinite possible concentration-time series over the
same period in our imaginary domain. Each possible concentration-time series is a
realization (Fig. 1.4). The ensemble is the collection of all possible realizations
(analogous to the population for a single random variable). The observed
concentration-time series is merely one realization of the ensemble.

Determining the possibility (likelihood) of the occurrence of this observed
concentration series demands the concept of joint probability density function (or a
joint probability distribution, JPD). This JPD is different from the PDF of a
random variable since the JPD considers the simultaneous occurrence of some
concentration values at different times.

To explain the meaning of the JPD, we consider two random variables (e.g.,
porosity n and hydraulic conductivity, K) and assume that the logarithm of each of
them (log K or log n) has a normal distribution. Fig. 1.5 shows their JPD f X,Y x, yð Þ.
Here X and x denote the variable log K, and its value, respectively. The Y is log n,
and y is its value, respectively. The JPD determines the probability of the
simultaneous occurrence of porosity and hydraulic conductivity over a range of
values. This JPD is different from the probability distribution of each variable
individually. The individual probability distribution of X or Y is the marginal
probability distribution of the JPD. The marginal probability distribution of X or Y
can be determined from their joint probability distribution:

Figure 1.4 Illustration of two possible realizations of a concentration-time stochas-
tic process, assuming jointly normal distribution with mean zero and variance one.
The solid black line is the mean, and the two dashed lines are standard deviations.
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f X xð Þ ¼
ð∞

�∞

f X,Y x, yð Þdy, f Y yð Þ ¼
ð∞

�∞

f X,Y x, yð Þdx (1.4.1)

The marginal probability is an orthogonal projection of the JPD to the X or Y-axis.

1.4.1 Joint Probability Density Function

A joint probability density function (JPDF) for the stochastic concentration
process, C1,C2,C3 . . . , thus is represented as f C1C2C3

. . . C1,C2,C3 . . .ð Þ, which
satisfies the following properties:

(1) f C1C2C3
. . . C1,C2,C3 . . .ð Þ � 0 for all C1,C2,C3 . . . (1.4.2)

This property states that the JPD must be greater than zero for all concentrations at
any time.

Figure 1.5 A joint probability density function of log K and log n. Modified from
stackoverflow.com
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(2)

ð∞

�∞

ð∞

�∞

ð∞

�∞

. . .

ð∞

�∞

f C1,C2,C3 . . .ð ÞdC1dC2dC3 . . . ¼ 1 (1.4.3)

The sum of the JPD for all possible concentrations must equal 1.

(3) P A<C<B, D<C2 <E, F <C3 <G . . .ð Þ

¼
ðB

A

ðE

D

ðG

F

. . .

ð...

...

f C1,C2,C3 . . .ð ÞdC1dC2dC3 . . .
(1.4.4)

The probability of occurrence of the concentration of certain intervals is the sum of
all JPD over the given intervals.

1.4.2 Ensemble Statistics

Ensemble statistics assume that the ensemble (i.e., all possible realizations) is
known. If the JPD of the process is Gaussian, the first and second moments are
sufficient to characterize the stochastic process. Otherwise, this is the best we
can do.

Mean (1st moment) is defined as

E C½ � ¼ μ ¼
ð∞

�∞

ð∞

�∞

ð∞

�∞

. . .

ð∞

�∞

C1,C2,C3 . . . f C1,C2,C3 . . .ð ÞdC1dC2dC3 . . . (1.4.5)

The expectation value, E, is carried out over the entire ensemble. The mean, E C½ � ¼ μ,
thus is the average (the most likely) concentration value over the ensemble.

Covariance or Covariance function (2nd moment) is defined as

R ξð Þ ¼ E C tð Þ� μð Þ C tþ ξð Þ� μð Þ½ �

¼
ð∞

�∞

ð∞

�∞

ð∞

�∞

. . .

ð∞

�∞

C1� μð Þ, C2� μð Þ, C3� μð Þ . . .

f C1,C2,C3 . . .ð ÞdC1dC2dC3 . . .

(1.4.6)

In Eq. (1.4.6), ξ is the separation time between two concentrations (random variables)
at two different times. As a result, the covariance measures the temporal relationship
between the concentrations at a given time and other times, characterizing the joint
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probability distribution of a stochastic process. If the separation time is zero, the
covariance collapses to the variance of the process. That is,

σ2 ¼ R 0ð Þ ¼ E C tð Þ � μð Þ C tð Þ � μð Þ½ � (1.4.7)

The variance is always positive, and covariance is symmetric and could have
negative values at some separation time, for instance, a periodic time series (see
Fig. 1.10).

Autocorrelation or Autocorrelation function is the covariance normalized by the
variance:

ρ ξð Þ ¼ R ξð Þ
σ2

(1.4.8)

It has the following properties:
1. The autocorrelation function is always symmetric.
2. �1 < ρ ξð Þ < 1 and it is always a real number.
3. ρ 0ð Þ ¼ 1.

The autocorrelation function is a statistical measure of the similarity of the
concentration-time series offset by a given separation time. It often is used to
detect the periodicity of the time series.

1.4.3 Stationary and Nonstationary Processes

A stationary process is a stochastic process where the JPDs or statistical properties
do not vary with temporal or spatial locations. This concept is analogous to the
spatial homogeneity of geologic media’s hydraulic properties or the spatial
representative elementary volume concept (spatial REV, Yeh et al., 2015, or
Section 1.5). A second-order stationary process requires only the first and second
moments of the JPD to be stationary. For a Gaussian JPDF, a second-order
stationary process implies stationary. If a process does not meet this requirement, it
is a nonstationary process. For instance, the time series, which has a large-scale
trend (e.g., seasonal or annual trends), is nonstationary. In reality, natural processes
are nonstationary since they have multi-scale variability. Nonetheless, they can
always be treated as stationary since the large-scale trend can always be
conceptualized as a stochastic process (an abstract concept).

Suppose one treats a nonstationary process as a stationary process. One
implicitly includes the large-scale trend as the stochastic process. As such, the
variance of this “stationary” process is large since it includes the variability of the
large-scale trend. If the large-scale trend is known and characterized, it can be
removed as a deterministic feature. The residual variable (after removing the trend)
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can then be stationary if the residual statistics are invariant. In this case, the
variance of the residual should be smaller than the original.

The above stochastic analysis assumes that the JPD is jointly Gaussian, like all
statistical analyses. Therefore, a jointly Gaussian stochastic process is fully
characterized if the mean and the autocovariance function are specified. An
illustration of JPD of a Gaussian stochastic process is formidable. Nevertheless, we
show in Fig. 1.6 a bivariate JPD with different correlations (covariances). As
shown in Fig. 1.6, if two random variables are uncorrelated, their JPD is concentric
bell-shaped. An increase in the correlation between the two variables squeezes the
JPD’s symmetric bell shape to an elliptic one. This correlation effect is further
explained in Fig. 1.9.

1.4.4 Sample Statistics

As already discussed, the stochastic concept and theories are built upon the ensemble.
In reality, we, however, can only observe one realization. Owing to this fact, wemust
adopt the ergodicity assumption as we apply stochastic theories to real-world
problems. The ergodicity states that the statistics from the time series we observed
represent the ensemble statistics as long as the series is sufficiently long. Of course,
how long is sufficiently long is a question. “Up to one’s judgment” is the answer since
we never know the ensemble, and no one can discredit your assessment. In other
words, ergodicity is our working hypothesis – the best we can do.

Furthermore, our observed time series always has a finite length, and the
samples and records are not continuous but discrete. We, therefore, developed
methods to calculate the sample statistics as follows:

Consider the case in which we take N concentration measurements,
Ci,i ¼ 1 . . .N, at a regular time interval Δtð Þ at a lake’s location. The mean of
the concentration-time series is

Figure 1.6 Effects of correlation on bivariate (log K and log n) JPD. ρ is the
correlation between the two random variables.
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C ¼ 1
N

XN
i¼1

C tið Þ (1.4.9)

While this formula is identical to the sample mean of a random variable (Eq. 1.3.6),
this concentration-time series is a stochastic process. Also, Eq. (1.4.9) is a temporal
averaging, not ensemble averaging, implicitly invoking the ergodicity assumption.

To calculate the temporal relationship between the concentration value at ti and
at other times, we use the sample covariance function:

Cov ξð Þ ¼ Cov ti, ti þ ξð Þ ¼ 1
N � L

XN�L

i¼1

C tið Þ � C
� �

C ti þ ξð Þ � C
� �

(1.4.10)

In Eq. (1.4.10), ξ ¼ LΔ t (separation time); Δt is the sampling time interval; L is the
number of intervals, ranging from 1 to N � 1. Fig. 1.7 illustrates the operation of
this equation. When L = 1, Eq. (1.4.10) calculates the sum of the product of the
N � 1 pairs of concentration perturbations (concentration minus its mean) separ-
ated by one Δt, and the resultant is then divided by N � 1. As L = 2, it repeats
the calculation for N � 2 pairs separated by twos. This procedure is repeated
until L = N � 1, or only one pair of concentrations is left.

As L = 0, the covariance is the sum of the product of C tið Þ and itself at all
measurement times and divided by N. It becomes the variance, denoted as S2.

S2 ¼ Cov 0ð Þ ¼ Cov ti,ti,ð Þ ¼ 1
N

XN
i¼1

C tið Þ � C
� �

C tið Þ � C
� �

: (1.4.11)

Eq. (1.4.10), the sample covariance function, examines the relationship between
pairs of concentration data separated at different numbers of Δt s by increasing
the L value. Notice that increasing L decreases the number of pairs for the
product operation, reflected by N � L’s value. For example, when L = N � 1,
the formula has only one pair of concentrations (i.e., c t1ð Þ and c tNð Þ for calculating
the covariance. As L becomes large, the number of pairs for evaluating the

Figure 1.7 An illustration of the autocovariance algorithm (Eq. 1.4.10).
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covariance becomes small. The estimated covariance is thus not representative the
time series’s actual covariance and is often discarded.

Notice that some prefer to use N � L � 1 instead of N � L for the denominator
in Eq. (1.4.10) for unbiased estimates. However, statistics are merely a bulk
description of a process, and such a theoretically rigorous treatment may not be
necessary for a practical purpose.

Graphical interpretation of Eq. (1.4.10) is given in Fig. 1.8, where the solid
black line denotes the observed time series of the concentration, and the red
dashed line represents the observed series after being shifted by a separation time
ξ. Eq. (1.4.10) sums up the products of the pairs of C values of the solid black
and dashed red lines at every t inside the overlapped yellow area. It then
divides the sum by the total number of pairs within the area to obtain the
covariance at a given separation time interval ξð Þ. Subsequently, the two series
are shifted by another ξ, and the above procedure is repeated till the overlapping
area is exhausted.

Eq. (1.4.12) defines the sample autocorrelation function

ρ ξð Þ ¼ ρ ti, ti þ ξð Þ ¼ 1

S2 N � Lð Þ
XN�L

i¼1

C tið Þ � C
� �

C ti þ ξð Þ � C
� �

(1.4.12)

which is simply the covariance (Eq. 1.4.10) normalized by the variance (Eq. 1.4.1).
After the normalization, the maximum autocorrelation is 1, and the range of the
correlation is bounded by �1 and +1. Eq. (1.4.12) can be implemented in
Microsoft Excel (see homework 1.2).

Scatter plots in Fig. 1.9 explain the physical meaning of the autocorrelation
function. Instead of summing the products of different pairs of time-series data

Figure 1.8 An illustration of the physical meaning of the autocovariance function.
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using Eq. (1.4.12), we plot each pair of data series in the overlapped area
with different shifts (separation times ξ ¼ 0, 1, 5, 10, 20, and 30) on a X�Y
plot and then carry out a correlation analysis (Eq. 1.4.12), as illustrated in Fig. 1.9a,
b, c, d, e, and f, respectively. Each plot shows the correlation value ρ between the
time series and that after a shift. When the shift is zero, the data pairs from the solid
black and dashed red lines in Fig. 1.8 overlap on the 45-degree (1:1) red line, and
the correlation value is one, indicating that these data pairs are perfectly correlated
(identical). As the shift becomes large, the data pairs start scattering around the 1:1

Figure 1.9 Scatter plots to elucidate the physical meaning of autocovariance
function calculation. They show how the similarity between the original concen-
tration time-series and those shifted with different time intervals.
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line, and the correlation value drops below 1, indicating that the shifted dashed red
line is dissimilar to the solid black line in Fig. 1.8. As the shift becomes large, the
dissmilarity becomes significant, and the correlation drops further.

These scatter plots manifest that an autocorrelation analysis compares the time
series at different separation times for their similarity based on the linear statistical
correlation analysis. Accordingly, autocorrelation analysis is a valuable tool for
finding the time the recurrence of similar events in a time series (e.g., diurnal,
seasonal, or annual variation in precipitation, temperature, or flood events of
certain magnitudes).

Figure 1.10a shows a sinusoidal time series infested with white noises (i.e.,
uncorrelated random noise at a scale smaller than the sampling time interval).
This series is nonstationary or has multi-scale variability. Its autocorrelation

Figure 1.10 A periodic sine concentration time series corrupted with white noise is
shown in (a). The time series autocorrelation function (b) indicates the periodicity
of the sine function and noise. The sudden drop of the autocorrelation value at the
origin reflects that the noise is non-periodic.
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function is plotted in Fig. 1.10b. The autocorrelation function reveals that the
peaks and troughs of the time series reoccur at a period of 60 and the effect of
non-periodic white noise at the origin (also see stochastic representation in
Chapter 9).

Likewise, Fig. 1.11 displays the sample autocorrelation functions of the two
realizations of stochastic time series in Fig. 1.4, which does not have a
noticeable large-scale periodic component as in Fig. 1.10a. First, the two
realizations’ autocorrelation functions decay as the separation time increases, but
they are not identical. The difference manifests the non-ergodic issue of a single
realization of a stochastic process of a short record. Second, the autocorrelations
drop from 1 to 0 as the separation time increases beyond the separation time
around 50, indicating that the pairs of concentration data, separated by the
separation time greater than 50, are unrelated (or statistical independent).
Statistical independence means that one value’s occurrence does not affect the
other’s probability.

Further, the autocorrelation at the separation time greater than 50 becomes
negative. A negative correlation value means that the time series are correlated
negatively at this separation time – the series are similar but behave oppositely.
Notice that the autocorrelations fluctuate at large separation times due to the small

Figure 1.11 Estimated autocorrelation functions for the two realizations in Fig. 1.4.
(file: molecular diffusion/console1/two realizations auto.lpk).
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number of pairs available for the analysis. Thus, the autocorrelation values at these
separation times are deemed unrepresentative.

This section introduces the basic concepts of the stochastic process, which will
be utilized throughout this book to explain observations and theories of flow and
solute transport in the environment. While the time series are used to convey the
stochastic concept, the concept holds for spatial series, where the variable varies in
space (to be discussed in Chapter 9).

In summary, a stochastic process comprises many possible realizations in our
imaginary domain with a given joint probability density function. The distribution
is generally considered a joint normal or Gaussian distribution (although not
limited to). For this reason, a stochastic process can be described by its mean and
covariance function. If the process’s distribution is not Gaussian, the mean and
covariance description is merely approximation – the best we can do and a
working hypothesis for our scientific analysis.

1.4.5 Homework

The homework’s exercises below intend to demonstrate the power of widely
available Microsoft Excel for scientific and engineering applications and enhance
understanding of stochastic processes and autocorrelation functions.

(1.1) Use Microsoft Excel to create 80 cells (time steps). Assign a constant
temperature value 1 for the first 10 cells and a value of �1 to the next ten cells.
Repeat this pattern until the end of the 80 cells (Fig. 1.12). Use Eq. (1.4.12). This
equation can be implemented in Excel using the following formula.

Figure 1.12 The graph shows the temperature variation as a function of time.
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=SUMPRODUCT(OFFSET(data,0,0,n-lag,1)
-AVERAGE(data),OFFSET(data,lag,0,n-lag,1)-AVERAGE(data))/DEVSQ

(data). (A1)

Data in the above formula is the entire data set, n is the total number of data points
(80), and lag is the L in the equation. The lag ranges from 0 to 20. Calculate the
autocorrelation function of this series, following the instruction below:

• First, create a column for the data. Select “formulas” in the Excel manual, then
select “Name Management” and define “data” as the name of the corresponding
cell locations of all data in the column.

• Next, create a new column with name “lag” and assign 0, 1, through 20 to this
new column. Use the name management to define the lag with the cell location of
the first lag.

• Create another new column with the name “ACF”. In the first cell below the
name ACF, enter the formula in Eq. (A1).

• Drag this cell down to reach lag = 20, creating the autocorrelation values for
ACF column.

• Plot the temperature data set vs time and the autocorrelation function vs. lag.

Determine the lag where the correlation value is close to zero. Is this lag close to
the time step where the C value is constant? What does this result imply? Why
does the correlation value drop at large time lags? (Hint: finite length)

(1.2) Generate autocorrelated random time series using Excel.

This homework exercise shows a simple Excel approach to generate an
autocorrelated random time series, derive the sample autocorrelation function
(ACF), and fit an exponential ACF to the sample ACF for estimating the
correlation scale (lambda). Follow the steps below.

(1) Use “RAND()” function in Excel to generate a column of 500 random numbers
(ranging from 0 to 1) vs row numbers in column A. Select the 500 random
numbers and press CTRL C, then Shift F10, and then V to freeze the random
number just generated. The series of the random number is a realization of an
uncorrelated random field – Column A.

(2) Plot this realization of the random field and its histogram. Determine the mean
and variance.

(3) Calculate and plot the autocorrelation function (ACF) vs. lag of Column
A using the procedure in Problem 1. The ACF should drop from 1 rapidly
after the first lag, indicating an uncorrelated random field.
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(4) In the first cell of another column (e.g., Column B, cell B1), generate a random
number using = RAND(). Then, set the next cell as “= B1”) and drag this cell
to the following eight cells. This step creates 10 cells with the random number,
the same as the first one. Select the generated ten cells with the same random
number and drag it down to yield 500 numbers, partitioned into 50 segments.
Each segment has a different random value. Freeze this column, and this
column of data will be Column B.

(5) Create another column (Column C), being the sum of Columns A and B,
yielding a realization of an autocorrelated random field. Afterward, carry out
the autocorrelation analysis of this realization, using the procedure in Problem
1.1 to obtain a sample ACF. Determine mean and variance and show the
histogram. Plot the random fields of Columns A and C, and the sample ACF
vs. lag of Columns C. Compare the ACFs of the two to see the differences
between Columns A and C. Verify that this random field Column C correlates
over more lags than in Column A.

Fitting an Exponential ACF Model to the Estimated ACF

(6) Set a cell as “lambda” (correlation scale) and assign a numerical value to the
next cell. Then define lambda (correlation scale) with the cell using the name
manager as in problem 1.

(7) Create a new column with a length of the lag (1–20). Enter “= EXP(-lag/
lambda)” at the first cell and drag it along the column to lag = 20, yielding the
predicted theoretical ACF at each lag based on the exponential function with
the given lambda value.

(8) Set up another column with the name “Error^2”, which is the square of the
difference between the sample ACF from the random field with the predicted
theoretical ACF. Below the end of this column, create a cell, “sum error^2”, as
the sum of all cells of the Error^2 column.

A nonlinear regression solve must be used to find the optimal lambda value that
best fits the exponential ACF to the sample ACF. We need to use Solver Add-in in
Excel. This nonlinear regression tool is extremely helpful for the analyses and
homework in the book.

Install Solver Add-In (If it is not installed).
Press “File” tab and then select “option”.
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Press go. Then select solver add-in, and then press OK.

Back to excel sheet and select data and solver should appear.

Click Solver. (1) define the objective, which is the cell numbere of the sum of
error^2. (2) Then select Min (minimizing the sum of error^2). (3) Enter lambda (or
the cell location of the paramter to be adjusted). (4) Select GRG Nonlinear
solving method.
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(5) Press solve. Excel will automatically change the lambda value to derive the
minimal sum of error^2. Meanwhile, the column of the predicted theoretical ACF
will be updated to be the best-fit ACF.

Plot the sample and the best-fit theoretical ACF. Discuss the relationship
between the correlation scale (the lambda value) and the number of cells with the
constant value. Is it close to 1/2 of the number of cells?

(1.3) Explain why the autocorrelation is one when the L is zero, but the covariance
is the highest and decreases as the L becomes large, as the correlation
becomes small?

1.5 Stochastic Fluid-Scale Continuum

After the basic concepts of stochastic processes, we are ready to illustrate their
importance in the classical “deterministic” fluid properties in the fluid-scale-
continuum.

1.5.1 Fluid Continuum and Control Volume

Like any scientific study of natural phenomena, fluid mechanics makes underlying
assumptions about the materials under investigation. For example, the fluid
properties in fluid mechanics refer to the properties of a point in the fluid.
However, suppose we randomly pick a point (an infinitesimally small volume) in a
fluid. Due to the fluid matter’s discrete nature, that point might be within an atomic
particle or in the space between atomic particles. Therefore, the fluid “properties”
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associated with a point in fluid mechanics would depend upon the measurement
point’s location. This point concept creates a discontinuous distribution of
properties in space for the substance, prohibiting calculus and differential
equations built on smoothness and continuity. To avoid this problem, scientists
and engineers employ the continuum assumption. In other words, they use the
“volume-average” concept to idealize the fluid macroscopically continuous
throughout its entirety; the molecules are being “smeared” or “averaged” to
eliminate spaces between atomic particles and molecules. Similarly, the volume-
averaged velocity in fluid mechanics conceals continuous collisions between
molecules and omits molecular-scale velocities in fluid mechanics.

Indoctrinated by the continuum assumption, the fluid’s physical or chemical
attribute at a point in fluid mechanics’ mathematics is the property in a small
volume of the actual space. For example, a solute concentration is the mass of
solute molecules (M) per volume of the solution Vð Þ:

C ¼ M

V
(1.5.1)

This volume must be large enough to contain many molecules and is called a
control volume (CV). This CV is our “sample volume” or “sample scale” from
which we measure or define the fluid’s attributes (such as force, temperature,
pressure, energy, velocity, and other variables of interest in fluid mechanics or
properties). Such a volume-average attribute ignores the distribution of molecules.
For instance, a concentration informs us of the total solute mass, not the solute’s
spatial distribution in the volume.

The control volume could also be a volume over which we conceptualize the
fluid’s states, conduct mass or energy balance calculations, or formulate a law (e.g.,
Darcy’s or Fick’s law). Therefore, it can be our model volume or model scale.

1.5.2 Spatial Average, Ensemble Average, and Ergodicity

Suppose we define a volume-averaged fluid property in a volume of 1 m3 fluid,
using a small CV (0.01 m3) at various fluid locations, and find the property is
translationally (or spatially) invariant. This CV is then the property’s representa-
tive elementary volume (REV). The word representative implies that the fluid
properties observed in this volume (0.01 m3) are identical to those observed in
other fluid locations (1 m3). On the other hand, the word “elementary” means that
the volume (0.01 m3) is smaller than the entire fluid body and is an element of the
entire fluid (1 m3).

If this REV exists, the fluid is considered homogeneous regarding the property
defined over this CV. Otherwise, the fluid is heterogeneous. Notice that the
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property defined over CVs smaller than the REV may still be heterogeneous –

varying in space, implying homogeneity or heterogeneity definition is scale-
dependent.

The REV concept is analogous to the size of the moving averaging window in
signal processing. Suppose the window size (smaller than the entire record of
signals) encompasses enough spatially varying signals to capture the representative
characteristics of the entire signal record. This size of the window is a REV.
Because this classical REV concept rests upon spatial invariance, it is most
appropriately called the spatial REV, which is different from the ensemble REV
to be explained next.

The following concentration examples explain the differences in spatial
average and ensemble average concepts. Suppose we define the concentration at
every point in a solution of 1m3 by overlapping a small CV of 0.01 m3 to obtain a
continuous concentration distribution C xð Þ. The x is a location vector, x or (x, y) or
(x, y, z) for one, two, or three-dimensional space.

If C xð Þ is invariant in x, the solution is well mixed at this CV, and this CV of
0.01 m3 is the concentration spatial REV. Otherwise, the solution is poorly mixed,
and this CV is not a spatial REV. Nonetheless, albeit C xð Þ varies in x, one may
treat the solution of 1m3 well mixed by defining the concentration as the total mass
normalized by the total volume (1 m3), ignoring the spatially varying concentration
defined at the CV of 0.01 m3. This well-mixed proposition arises from our lack of
interest in the detailed solute concentration spatial distribution within this volume
(1 m3). This argument leads to the following discussion of CV and REV concepts
for the concentration of a solute.

Consider a discrete solute molecule distribution everywhere in a one-
dimensional solution domain, as illustrated in Fig. 1.13a. Suppose we adopt a

Figure 1.13 Effects of smoothing by a CV. A volume-averaging procedure over a
CV converts a discrete and erratic solute spatial distribution into a continuous
concentration distribution. The blue circles denote molecules.
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small CV to define the solute concentration and continuously overlap the CV at
every point along this line, yielding a continuously but spatially varying
concentration distribution, i.e., a poorly mixed solution (Fig. 1.13b). This
distribution is characterized by a spatial mean and a spatial variance, representing
the most likely concentration and the concentration’s variability above the mean.
The mean and variance calculated from the observed concentrations over the
domain are spatial statistics.

By enlarging the CV’s size yet smaller than the entire domain, we may obtain a
constant concentration everywhere (equivalent to the spatial mean). These CVs are
spatial REVs, as illustrated in Fig. 1.14b, and the solute defined over these sizes’
CV is considered well-mixed.

There are situations where the concentration field, C xð Þ, remains varying in
space even if the size of the CV is increased (e.g., Figs. 1.15 a and b): the C xð Þ
always exhibits a spatial trend (a large-scale variation). Despite this trend, one can
employ the entire domain as a fixed CV to determine a volume-averaged
concentration over the entire domain and treat the solution well-mixed (Fig. 1.16).
This CV is fixed in space and is not spatially translational, as are those used to
define C xð Þ. Such a well-mixed solution proposition based on the entire domain
implies a spatial REV since the volume-averaged concentration over this fixed
large CV is the mean concentration of the entire domain, satisfying the
representativeness requirement of a REV. However, such a large CV is not the
solution’s elementary volume; therefore, it is not a spatial REV. The ensemble
concept discussed next resolves this paradox.

The ensemble concept envisages that the observed spatially varying concentra-
tion field with a trend or not in the domain is merely a possible spatial distribution
(realization) of many possible ones (ensemble), characterized by a JPD. In other
words, an infinite number of CVs of the size as large as the entire domain exists,

Figure 1.14 If a CV is sufficiently large and its average concentration is transla-
tionally constant, the CV is called a spatial REV and the solute is considered
well mixed.
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with its own spatially varying concentration field but the same spatial mean and
variance, describing the concentration field’s spatial variability in each CV (see
Fig. 1.17). Such mean and variance are the ensemble mean and variance.

This concentration of the CV fixed in space as large as the entire domain thus
possesses the same mean and variance as other realizations and is a realization of the

Figure 1.15 (a) The solute particle distribution has a higher number of particles
toward the right. (b) The blue line represents the spatial distribution of concen-
tration (% of solute particles over a small CV). The distribution is a continuously
varying concentration field with an increasing trend toward the right. The solution
is poorly mixed.

Figure 1.16 The blue line represents the concentration along a line, which exhibits
variation and an increasing trend to the right. The red line is the volume-average
concentration over a CV, covering the entire solution.
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ensemble. It satisfies the representativeness and elementary volume requirements of
a REV.As a result, this large CV fixed in space qualifies as an ensembleREV (in our
imaginary space), albeit it is not the spatial REV. Following this argument, any size
CV is an ensemble REV at a point in space. That is to say, a volume-averaged
concentration at a point is an ensemble-averaged concentration at that point.
Ultimately, the ensemble REV is a more general definition of REV than the classic
definition since it includes the spatial REV.

Once the ensemble REV is accepted, acquiring the JPD of the ensemble
becomes a question since all the realizations in the ensemble are unknown. The
“Ergodicity” assumption address this question, which states that the spatial
statistics from our observations (one realization) are equivalent to the statistics of
the ensemble. In plain English, we see one, and we see them all. As is, it may be
counterintuitive because the ensemble is unknown. Nevertheless, we accept it as a
working hypothesis – the best we can do.

At this point, readers may wonder about the need for these statistical concepts at
the beginning of this book. This need arises because multi-scale heterogeneity
exists in nature, they are unknown, and all our theories, laws, and observations
inherently embrace the ensemble-average concept. For instance, a measured
property may be deterministic, but it is an ensemble-averaged quantity – ignoring
details within the volume. As we investigate the details within the volume, we find
that the details are inherently stochastic (unknown). This stochastic nature of the
property or process has often been ignored because it is beyond our observation

Figure 1.17 The volume-averaged constant concentration of a solution field can be
viewed as the mean concentration of many possible solute concentration distribu-
tions over CVs of the same size in the ensemble space. In order to restrict the size
of the ensemble, we constrain it by requiring that all the concentration realizations
have the same spatial mean and variance.
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scale and interest. As we extrapolate these theories and laws to field-scale
problems much larger than our observation scales, these stochastic concepts
become relevant to comprehending the stochastic nature of the classical theories
for solute transport.

1.5.3 Flux Averages

Besides the volume and ensemble averages, flux averages are used to investigate
solute transports in the environment, as discussed below (Fig. 1.18).

The classic solute transport analysis (e.g., Kreft and Zuber, 1978; Parker and
Van Genuchten, 1984) has recognized two types of averaged concentrations.

1. Volume-Averaged (or resident) Concentration: the mass of a solute per unit
volume

C ¼ M

V
¼ M

L3

� �
(1.5.2)

A typical example of volume-averaged concentration is illustrated in Fig. 1.17. If
three point sampling boreholes (left-hand side of the figure) tap into dolomite,
gravel, and sand layers of an aquifer, concentrations of some chemical at the three
depths are sampled (namely,C1,C2, andC3 ). The volume-averaged concentration is

Figure 1.18 A schematic illustration of volume and flux averaged concentrations.
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C ¼ C1 þ C2 þ C3

3
: (1.5.3)

Such a volume-averaged approach is likely inappropriate in many applications. For
example, as illustrated in the figure’s right-hand side, a pumping well is fully
screened over the entire aquifer. The concentration sampled from the discharge
from the well is average. However, this average weighs heavily on the concen-
tration from the gravel layer, which has the highest discharge to the total well
discharge Q. As a result, a flux-averaged concentration is most appropriate to
represent the sample concentration.

2. Flux-averaged (flux) concentration Cf :

Cf ¼ Q1C1 þ Q2C2 þ Q2C2

Q
or Cf ¼

ð
CqdAð
qdA

(1.5.4)

Q1, Q2, and Q3 are discharges to the well from layers 1, 2, and 3. Likewise, the
concentrations in layers 1, 2, and 3 are denoted by C1 C2, and C3. The right-hand
of Eq. (1.5.4) is a continuous form of the flux-averaged concentration. In the
equation, C and q are the concentration and specific discharge at any point in the
aquifer. A denotes the total surface area of the screening interval.

Kreft and Zuber (1978) and Parker and Van Genuchten (1984) pointed out that
the resident or flux concentration could lead to different analytical solutions for the
advection–diffusion equation. Nevertheless, the importance of the differences
would depend on our scales of observation, interest, and model. Therefore, we will
adopt the residence concentration throughout the rest of this book.

Units of Concentration: The commonly used unit for concentration is mass per
volume (mg/liter). However, it is convenient to express the solute concentration in
mass per mass unit as described below for many situations where fluid density
varies in time and space (e.g., compressible fluids).

C ¼ Mass of α=Vol
Mass of solution=Vol

¼ ρα
ρ
¼ Mass of α

Mass of solution

¼ ppm parts per millionð Þ ¼ 1� 10�6

For water at room temperature, 1 liter (l) of water is about 106 mg. Therefore
1mg=l � 1ppm (part per million). This allows the conversion of volume-averaged
concentration to the mass per mass basis concentration definition.

Fundamental Concepts 31

https://doi.org/10.1017/9781009049511.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009049511.002


1.6 Summary

• A random variable has a probability distribution characterized by a mean
and variance.

• A stochastic process is a collection of many random variables. It has a joint
probability distribution, characterized by a mean and autocovariance function,
which quantifies the statistical relationship between the random variables.

• If the property in a CV at every point is known, spatial or volume average and
autocovariance can be defined. Otherwise, they are strictly ensemble statistics.
The spatial and ensemble statistics are equivalent if ergodicity is met or the
number of samples is sufficiently large.

• All properties in the fluid continuum are ensemble means over a given CV.

• The ensemble REV concept is more general than the classical spatial REV since
it applies to spatially variable properties or processes with a trend or not.

32 An Introduction to Solute Transport in Heterogeneous Geologic Media

https://doi.org/10.1017/9781009049511.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009049511.002

