Capecitabine (Xeloda) is a chemotherapy drug used to treat breast, gastric, and colorectal cancers. Commercial capecitabine crystallizes in the orthorhombic space group P212121 (#19) with a = 5.20587(3), b = 9.52324(4), c = 34.79574(21) Å, V = 1725.062(12) Å3, and Z = 4. A reduced cell search in the Cambridge Structural Database (Groom C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016) Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater.72, 171–179) yielded three previous structure determinations (Rohlicek, J., Husak, M., Gavenda, A., Jegorov, A., Kratochvil, B., and Fitch, A. (2016). Acta Cryst. Sect. E: Crystallgr. Commun.72, 879–880, BOVDUM; Malińska, M., Krzeczyński, P., Czerniec-Michalik, E., Trzcińska, K., Cmoch, P., Kutner, A., and Woźniak, K. (2014). J. Pharm. Sci.103, 587–593, BOVDUM01 and BOVDUM02), using synchrotron powder data and later single crystal data at two temperatures. In this work, the sample was ordered from United States Pharmacopeial Convention (lot # G0J205), and analyzed as-received. The room temperature (295 K) crystal structure was refined using synchrotron (λ = 0.413914 Å) powder diffraction data, density functional theory (DFT), and Rietveld refinement techniques. Hydrogen positions were included as part of the structure, and were re-calculated during the refinement. The diffraction data were collected on a beamline 11-BM at the Advanced Photon Source, Argonne National Laboratory and the powder X-ray diffraction pattern of the compound is provided. The agreement of the Rietveld-refined and DFT-optimized structures is poorest in the pentyl side chain, consistent with the disorder observed previously.