Strain-induced selective growth was investigated in a 1.5% temper-rolled Fe∼1%Si alloy using the electron backscatter diffraction (EBSD) technique. The EBSD technique was used to quantify the presence of orientation spreads within grains and to show that this particular case of selective growth can be directly related to differences in stored energy as reflected in the geometrically necessary dislocation content. The differences in stored energy were sufficient to give rise to selective growth as evidenced by bi-modal grain sizes.