There is much evidence for an endocannabinoid system in the retina.
However, neither the distribution of endocannabinoid uptake, the
regulation of endocannabinoid levels, nor the role of endocannabinoid
metabolism have been investigated in the retina. Here we focused on one
endocannabinoid, anandamide (AEA), and its major hydrolyzing enzyme, fatty
acid amide hydrolase (FAAH), in the goldfish retina. Immunoblots of FAAH
immunoreactivity (IR) in goldfish retina, brain and rat retina, and brain
homogenates showed a single band at 61 kDa that was blocked by
preadsorption with peptide antigen. Specific FAAH IR (blocked by
preadsorption) was most prominent over Müller cells and cone inner
segments. Weaker label was observed over some amacrine cells, rare cell
bodies in the ganglion cell layer, and in four lamina in the inner
plexiform layer. FAAH activity assays showed that goldfish-retinal and
brain homogenates hydrolyzed AEA at rates comparable to rat brain
homogenate, and the hydrolysis was inhibited by methyl arachidonyl
fluorophosphonate (MAFP) and N-(4 hydroxyphenyl)-arachidonamide
(AM404), with IC50s of 21 nM and 1.5 μM,
respectively. Cellular 3H-AEA uptake in the intact retina was
determined by in vitro autoradiography. Silver-grain accumulation
at 20°C was most prominent over cone photoreceptors and Müller
cells. Uptake was significantly reduced when retinas were incubated at
4°C, or preincubated with 100 nM MAFP or 10 μM AM404. There was no
differential effect of blocking conditions on the distribution of silver
grains over cones or Müller cells. The codistribution of FAAH IR and
3H-AEA uptake in cones and Müller cells suggests that the
bulk clearance of AEA in the retina occurs as a consequence of a
concentration gradient created by FAAH activity. We conclude that
endocannabinoids are present in the goldfish retina and underlay the
electrophysiological effects of cannabinoid ligands previously shown on
goldfish cones and bipolar cells.