To investigate the flame acceleration to detonation in 2.0 and 0.5 mm planar glass combustion chambers, the experiments have been conducted utilising ethylene/oxygen mixtures at atmospheric pressure and temperature. The high-speed camera has been used to record the revolution of flame front and pressure inside the combustion chamber. Different equivalence ratios and ignition locations have been considered in the experiments. The results show that the detonation pressure in the 2 mm thick chamber is nearly three times of Chapman-Jouguet pressure, while detonation pressure in the 0.5 mm thick chamber is only 45.7% of the Chapman-Jouguet value at the stoichiometric mixture. This phenomenon is attributed to the larger pressure loss in the thinner chamber during the detonation propagation. As the value of equivalence ratio is 2.2, the detonation cannot be produced in the 2 mm thick chamber, while the detonation can be generated successfully in the 0.5 mm thick chamber. This phenomenon indicates that the deflagration is easily to be accelerated and transformed into the detonation, due to a larger wall friction and reflection. Besides, the micro-obstacle has been added into the combustor can shorten the detonation transition time and reduces the distance of the detonation transition.