The nonlinear absorption (NLA) properties of potassium dideuterium phosphate crystals at 515 nm under different excitation laser intensities are investigated with the Z-scan technique. Two critical intensities are highlighted: the critical intensity for exciting the NLA and the critical intensity of the multiphoton absorption mechanism transition. Experimental results indicate the existence of defect states located in the band gap, which can be manipulated by varying laser intensity. A model based on the change of multiphoton absorption mechanism induced by the transformation of defect species is proposed to interpret the experiments. Modeling results are in good agreement with the experiment data.