A direct subspace of a dynamic three-dimensional joint space is found to be useful for robot path planning in workspaces comprised of both static and dynamic objects. Dynamic descriptions permit positioning tables, automated guided vehicles, conveyors and cycling machine tools to be modeled by elements which translate or cycle along rectilinear paths. Graphical path planning procedures use cursor indicators to move the robot configuration point between the desired starting and final configurations while avoiding both the static and dynamic joint space obstacles.