Two-dimensional flow of Jeffrey fluid by an inclined stretching cylinder with convective boundary condition is studied. In addition the combined effects of thermal radiation and viscous dissipation are taken into consideration. The developed nonlinear partial differential equations are reduced into the ordinary differential equations by suitable transformations. The governing equations are solved for the series solutions. The convergence of the series solutions for velocity and temperature fields is carefully analyzed. The effects of various physical parameters such as ratio of relaxation to retardation times, Deborah number, radiation parameter, Biot number, curvature parameter, local Grashof number, Prandtl number, Eckert number and angle of inclination are examined through graphical and numerical results of the velocity and temperature distributions.