Previously, we have shown that satiety and metabolites increased after high-fat modified sham feeding (MSF). We assessed possible metabolic effects due to oral stimulation with a high-fat sham-fed ‘meal’, in comparison with a high-fat fed meal and with water, in the postprandial state. Fourteen healthy women (aged 18–40 years; BMI 22·5 (sd 3) kg/m2) were fed in energy balance during 4 d with a 50 % enegy as carbohydrate, 15 % energy as protein and 35 % energy as fat menu. On day 4, subjects were given one out of three test lunches, 5 h after a high-fat breakfast, in random order: a high-fat MSF lunch, water (W) or the same lunch to be eaten (E), during their 36 h stay in the respiration chamber, where substrate oxidation, 24 h energy expenditure (EE) and appetite profile were measured. Oral fat stimulation by MSF increased EE (W 6·3 (sd 0·8) v. MSF 6·9 (sd 1·0) kJ/min and E 6·8 (sd 0·7) kJ/min; P < 0·04) for 1 h, increased plasma insulin concentrations (t = 15; W 10·0 (sd 3·4) v. MSF 13·2 (sd 4·0) v. E 22·3 (sd 3·3) units/l; P < 0·0001), attenuated changes in plasma NEFA concentrations (t = 15, W 432 (sd 108) v. MSF 418 (sd 146) v. E 282 (sd 72) μmol/l; P < 0·0001), plasma TAG concentrations (t = 60; W 1092 (sd 548) v. MSF 1116 (sd 493) μmol/l and E 1350 (sd 352) μmol/l; P < 0·02) and plasma glycerol concentrations (t = 15, W 87 (sd 29) v. MSF 74 (sd 34) μmol/l and E 67 (sd 18) μmol/l; P < 0·03). Over a longer period of time, MSF had no effects on substrate oxidation, diet-induced thermogenesis or total EE. In addition to the previously observed metabolic effects of oral stimulation with fat, EE is stimulated up to 1 h after the MSF meal.