Strong gas-mineral interactions or slow adsorption kinetics require a molecular-level understanding of both adsorption and diffusion for these interactions to be properly described in transport models. In this combined molecular simulation and experimental study, noble gas adsorption and mobility is investigated in two naturally abundant zeolites whose pores are similar in size (clinoptilolite) and greater than (mordenite) the gas diameters. Simulated adsorption isotherms obtained from grand canonical Monte Carlo simulations indicate that both zeolites can accommodate even the largest gas (Rn). However, gas mobility in clinoptilolite is significantly hindered at pore-limiting window sites, as seen from molecular dynamics simulations in both bulk and slab zeolite models. Experimental gas adsorption isotherms for clinoptilolite confirm the presence of a kinetic barrier to Xe uptake, resulting in the unusual property of reverse Kr/Xe selectivity. Finally, a kinetic model is used to fit the simulated gas loading profiles, allowing a comparison of trends in gas diffusivity in the zeolite pores.