A method using Li saturation and heating to 250°C to differentiate montmorillonite from beidellite and nontronite has been developed. The test utilizes three washings with 3 M LiCl and two washings with 0.01 M LiCl in 90% methanol to prevent dispersion. An 'infinitely thick’ sample (6–8 mg/cm2) on a glass slide is used to avoid the effects of the reaction of a thin clay film with sodium of the slide when it is heated at 250°C. Solvation with glycerol rather than ethylene glycol is used, because all of the Li smectites studied expanded to some extent in ethylene glycol after the heating. The smectites included several montmorillonites, a nontronite, and saponites. The presence of interstratified montmorillonite and beidellite layers was clearly shown by the test for several smectite samples, including the so-called beidellites from Beidell, Colorado, and Chen-yuan, Taiwan, and several soil clays. The test thereby provides more mineralogical information than the often-used arbitrary dividing point between montmorillonite and beidellite at 50% tetrahedral charge. Heating the Li-saturated clays at 250°C caused substitution of 35 to 125 meq/100 g of nonexchangeable Li. These amounts exceeded the changes in cation-exchange capacity plus Li by 4 to 21 meq/100 g, except for the end-member beidellite from the Black Jack mine, Idaho. Fusion with LiNO3 at 300°C could not be used to differentiate between smectites instead of washing with LiCl solution and heating to 250°C, because fused montmorillonite subsequently expanded to 18 Å with glycerol. Large increases in nonexchangeable Li were caused by the fusion of smectites, a vermiculite, and two partially expanded micas.