Equilibrium line altitudes (ELAs) of alpine glaciers are sensitive indicators of climate change and have been commonly used to reconstruct paleoclimates at different temporal and spatial scales. However, accurate interpretations of ELA fluctuations rely on a quantitative understanding of the sensitivity of ELAs to changes in climate. We applied a full surface energy- and mass-balance model to quantify ELA sensitivity to temperature and precipitation changes across the range of climate conditions found in the Andes. Model results show that ELA response has a strong spatial variability across the glaciated regions of South America. This spatial variability correlates with the distribution of the present-day mean climate conditions observed along the Andes. We find that ELAs respond linearly to changes in temperature, with the magnitude of the response being prescribed by the local lapse rates. ELA sensitivities to precipitation changes are nearly linear and are inversely correlated with the emissivity of the atmosphere. Temperature sensitivities are greatest in the inner tropics; precipitation becomes more important in the subtropics and northernmost mid-latitudes. These results can be considered an important step towards developing a framework for understanding past episodes of glacial fluctuations and ultimately for predicting glacier response to future climate changes.