This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalizations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces $H^{s}({\rm\Omega})$ and $\widetilde{H}^{s}({\rm\Omega})$, for $s\in \mathbb{R}$ and an open ${\rm\Omega}\subset \mathbb{R}^{n}$. We exhibit examples in one and two dimensions of sets ${\rm\Omega}$ for which these scales of Sobolev spaces are not interpolation scales. In the cases where they are interpolation scales (in particular, if ${\rm\Omega}$ is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large.