With the increasing demand for improved electronics cooling, thermal management and cooling techniques have evolved in design and efficiency over the last three decades. The paper focuses on heat pipes as practical as possible inexpensive alternatives to cool electronic components. An analysis of the necessary conditions allowing the appearance of convective motion and its interaction with energy exchange at the liquid/vapour interface is performed. The numerical simulation allows the access to the evaporation profile and its dependence with the operating conditions. The role of the inversion of the thermal distribution on the development and the orientation of the Marangoni cells and the local convection near the contact line is presented.