We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The role of severe respiratory coronavirus virus 2 (SARS-CoV-2)–laden aerosols in the transmission of coronavirus disease 2019 (COVID-19) remains uncertain. Discordant findings of SARS-CoV-2 RNA in air samples were noted in early reports.
Methods:
Sampling of air close to 6 asymptomatic and symptomatic COVID-19 patients with and without surgical masks was performed with sampling devices using sterile gelatin filters. Frequently touched environmental surfaces near 21 patients were swabbed before daily environmental disinfection. The correlation between the viral loads of patients’ clinical samples and environmental samples was analyzed.
Results:
All air samples were negative for SARS-CoV-2 RNA in the 6 patients singly isolated inside airborne infection isolation rooms (AIIRs) with 12 air changes per hour. Of 377 environmental samples near 21 patients, 19 (5.0%) were positive by reverse-transcription polymerase chain reaction (RT-PCR) assay, with a median viral load of 9.2 × 102 copies/mL (range, 1.1 × 102 to 9.4 × 104 copies/mL). The contamination rate was highest on patients’ mobile phones (6 of 77, 7.8%), followed by bed rails (4 of 74, 5.4%) and toilet door handles (4 of 76, 5.3%). We detected a significant correlation between viral load ranges in clinical samples and positivity rate of environmental samples (P < .001).
Conclusion:
SARS-CoV-2 RNA was not detectable by air samplers, which suggests that the airborne route is not the predominant mode of transmission of SARS-CoV-2. Wearing a surgical mask, appropriate hand hygiene, and thorough environmental disinfection are sufficient infection control measures for COVID-19 patients isolated singly in AIIRs. However, this conclusion may not apply during aerosol-generating procedures or in cohort wards with large numbers of COVID-19 patients.
To describe the infection control preparedness measures undertaken for coronavirus disease (COVID-19) due to SARS-CoV-2 (previously known as 2019 novel coronavirus) in the first 42 days after announcement of a cluster of pneumonia in China, on December 31, 2019 (day 1) in Hong Kong.
Methods:
A bundled approach of active and enhanced laboratory surveillance, early airborne infection isolation, rapid molecular diagnostic testing, and contact tracing for healthcare workers (HCWs) with unprotected exposure in the hospitals was implemented. Epidemiological characteristics of confirmed cases, environmental samples, and air samples were collected and analyzed.
Results:
From day 1 to day 42, 42 of 1,275 patients (3.3%) fulfilling active (n = 29) and enhanced laboratory surveillance (n = 13) were confirmed to have the SARS-CoV-2 infection. The number of locally acquired case significantly increased from 1 of 13 confirmed cases (7.7%, day 22 to day 32) to 27 of 29 confirmed cases (93.1%, day 33 to day 42; P < .001). Among them, 28 patients (66.6%) came from 8 family clusters. Of 413 HCWs caring for these confirmed cases, 11 (2.7%) had unprotected exposure requiring quarantine for 14 days. None of these was infected, and nosocomial transmission of SARS-CoV-2 was not observed. Environmental surveillance was performed in the room of a patient with viral load of 3.3 × 106 copies/mL (pooled nasopharyngeal and throat swabs) and 5.9 × 106 copies/mL (saliva), respectively. SARS-CoV-2 was identified in 1 of 13 environmental samples (7.7%) but not in 8 air samples collected at a distance of 10 cm from the patient’s chin with or without wearing a surgical mask.
Conclusion:
Appropriate hospital infection control measures was able to prevent nosocomial transmission of SARS-CoV-2.
To report an outbreak of measles with epidemiological link between Hong Kong International Airport (HKIA) and a hospital.
Methods:
Epidemiological investigations, patients’ measles serology, and phylogenetic analysis of the hemagglutinin (H) and nucleoprotein (N) genes of measles virus isolates were conducted.
Results:
In total, 29 HKIA staff of diverse ranks and working locations were infected with measles within 1 month. Significantly fewer affected staff had history of travel than non–HKIA-related measles patients [10 of 29 (34.5%) vs 28 of 35 (80%); P < .01]. Of 9 airport staff who could recall detailed exposure history, 6 (66.7%) had visited self-service food premises at HKIA during the incubation period, where food trays, as observed during the epidemiological field investigation, were not washed after use. Furthermore, 1 airport baggage handler who was admitted to hospital A before rash onset infected 2 healthcare workers (HCWs) known to have 2 doses of MMR vaccination with positive measles IgG and lower viral loads in respiratory specimens. Infections in these 2 HCWs warranted contact tracing of another 168 persons (97 patients and 71 HCWs). Phylogenetic comparison of H and N gene sequences confirmed the clonality of outbreak strains.
Conclusion:
Despite good herd immunity with overall seroprevalence of >95% against measles, major outbreaks of measles occurred among HKIA staff having daily contact with many international pssengers. Lessons from severe acute respiratory syndrome (SARS) and measles outbreaks suggested that an airport can be a strategic epidemic center. Pre-exanthem transmission of measles from airport staff to HCWs with secondary vaccine failure poses a grave challenge to hospital infection control.
A liver transplant recipient developed hospital-acquired symptomatic hepatitis C virus (HCV) genotype 6a infection 14 months post transplant.
Objective
Standard outbreak investigation.
Methods
Patient chart review, interviews of patients and staff, observational study of patient care practices, environmental surveillance, blood collection simulation experiments, and phylogenetic study of HCV strains using partial envelope gene sequences (E1–E2) of HCV genotype 6a strains from the suspected source patient, the environment, and the index patient were performed.
Results
Investigations and data review revealed no further cases of HCV genotype 6a infection in the transplant unit. However, a suspected source with a high HCV load was identified. HCV genotype 6a was found in a contaminated reusable blood-collection tube holder with barely visible blood and was identified as the only shared item posing risk of transmission to the index case patient. Also, 14 episodes of sequential blood collection from the source patient and the index case patient were noted on the computerized time log of the laboratory barcoding system during their 13 days of cohospitalization in the liver transplant ward. Disinfection of the tube holders was not performed after use between patients. Blood collection simulation experiments showed that HCV and technetium isotope contaminating the tip of the sleeve capping the sleeved-needle can reflux back from the vacuum-specimen tube side to the patient side.
Conclusions
A reusable blood-collection tube holder without disinfection between patients can cause a nosocomial HCV infection. Single-use disposable tube holders should be used according to the recommendations by Occupational Safety and Health Administration and World Health Organization.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.