We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14–24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning.
Exclusion of special populations (older adults; pregnant women, children, and adolescents; individuals of lower socioeconomic status and/or who live in rural communities; people from racial and ethnic minority groups; individuals from sexual or gender minority groups; and individuals with disabilities) in research is a pervasive problem, despite efforts and policy changes by the National Institutes of Health and other organizations. These populations are adversely impacted by social determinants of health (SDOH) that reduce access and ability to participate in biomedical research. In March 2020, the Northwestern University Clinical and Translational Sciences Institute hosted the “Lifespan and Life Course Research: integrating strategies” “Un-Meeting” to discuss barriers and solutions to underrepresentation of special populations in biomedical research. The COVID-19 pandemic highlighted how exclusion of representative populations in research can increase health inequities. We applied findings of this meeting to perform a literature review of barriers and solutions to recruitment and retention of representative populations in research and to discuss how findings are important to research conducted during the ongoing COVID-19 pandemic. We highlight the role of SDOH, review barriers and solutions to underrepresentation, and discuss the importance of a structural competency framework to improve research participation and retention among special populations.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Infants and young children are frequently colonized with C. difficile but rarely have symptomatic disease. However, C. difficile testing remains prevalent in this age group.
OBJECTIVE
To design a computerized provider order entry (CPOE) alert to decrease testing for C. difficile in young children and infants.
DESIGN
An interventional age-targeted before-after trial with comparison group
SETTING
Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, Tennessee.
PATIENTS
All children seen in the inpatient or emergency room settings from July 2012 through July 2013 (pre-CPOE alert) and September 2013 through September 2014 (post-CPOE alert)
INTERVENTION
In August of 2013, we implemented a CPOE alert advising against testing in infants and young children based on the American Academy of Pediatrics recommendations with an optional override. We further offered healthcare providers educational seminars regarding recommended C. difficile testing.
RESULTS
The average monthly testing rate significantly decreased after the CPOE alert for children 0–11 months old (11.5 pre-alert vs 0 post-alert per 10,000 patient days; P<.001) and 12–35 months old (61.6 pre-alert vs 30.1 post-alert per 10,000 patients days; P<.001), but not for those children ≥36 months old (50.9 pre-alert vs 46.4 post-alert per 10,000 patient days; P=.3) who were not targeted with a CPOE alert. There were no complications in those children who testing positive for C. difficile.
CONCLUSIONS
The average monthly testing rate for C. difficile for children <35 months old decreased without complication after the use of a CPOE alert in those who tested positive for C. difficile.