Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-29T19:44:21.479Z Has data issue: false hasContentIssue false

Morphometric Methods for Applied Ostracodology: Tools for Outline Analysis of Nonmarine Ostracodes

Published online by Cambridge University Press:  21 July 2017

Angel Baltanás
Affiliation:
Department of Ecology, Universidad Autónoma de Madrid, E-28049 – Madrid, SPAIN
Wolfgang Brauneis
Affiliation:
Institut für Mathematik, Universität Salzburg, A 5020 – Salzburg, AUSTRIA
Dan L. Danielopol
Affiliation:
Institut für Limnologie, Österreichische Akademie der Wissenschaften, A 5310 – Mondsee, AUSTRIA
Johann Linhart
Affiliation:
Institut für Mathematik, Universität Salzburg, A 5020 – Salzburg, AUSTRIA
Get access

Abstract

Morphometric techniques for the analysis of shape change in organisms have experienced a noteworthy development in the last decade. But despite the significant contributions that ostracodologists made to the field, their use in standard ostracode research is far from common. This contribution stresses the usefulness of morphometric methods to describe ostracode valve outlines and to summarize shape changes cued by environmental factors. Focus is on nonmarine ostracodes which are generally poorly ornamented so that their carapaces offer few landmarks for characterization of morphological change. Out of several alternatives three techniques for shape analysis are applied here: the B-splines method for approximative description of ostracode contours, Elliptic Fourier Analysis (EFA) and a Generalized (Resistant Fit) Procrustes Analysis. B-splines method is presented here for the first time within a biological framework and both its mathematical basis and practical usage are discussed. Additionally a computer program, Morphomatica, developed for performing B-splines analyses of ostracod outlines is briefly documented.

Three case studies exemplify here how morphometric analysis might help either to detect environmental influences in ostracode shape or to show how morphological diversity of ostracode valve reflects environmental change. First, morphological variability within a clonal lineage of Heterocypris barbara (Gauthier and Brehm) is shown to be related to environmental variables (mainly temperature) when raised under controlled conditions in the lab. Second, carapace variability at the population level is explored in a widely distributed species (Limnocythere inopinata Baird) sampled from distant localities. Morphometric analyses illustrate how such variability is not related to geographic distance but to environmental conditions. Finally, patterns of temporal change in morphological diversity of a widely distributed ostracode group, the Candoninae, are elucidated by using the B-splines method combined with multivariate statistical analysis.

It is concluded that morphometric methods deserve to be included in the methodological toolbox of practicing ostracodologists as they can provide useful information in ecological and paleoecological research.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Reyment, R. A., Bookstein, F. L., Honigstein, A., Almogi-Labins, A., Rosenfeld, A., and Hermelin, O. 1988. Microevolution in two species of ostracods from the Santonian (Cretaceous) of Israel. Historical Biology, 1: 303322.CrossRefGoogle Scholar
Alcorlo, P., Baltanás, A., and Arqueros, L. 1999. Intra-clonal shape variability in the nonmarine ostracod Heterocypris barbara (Crustacea, Ostracoda) Geosound (Yerbilimleri), 35:111.Google Scholar
Baltanás, A., Alcorlo, P., and Danielopol, D. L. 2002 Morphological disparity in populations with and without sexual reproduction: a case study in Eucypris virens (Crustacea, Ostracoda). Biological Journal of the Linnean Society, 75:919.CrossRefGoogle Scholar
Baltanás, A., and Geiger, W. 1998. Intraspecific Morphological Variability: morphometry of valve outlines p. 127142 In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods. Backhuys Publishers, Leiden.Google Scholar
Baltanás, A., Namiotko, T., and Danielopol, D. L. 2000. Biogeography and disparity within the genus Cryptocandona (Crustacea, Ostracoda). Vie et Milieu, 50:297310.Google Scholar
Bayer, S., Brauneis, W., and Trischitz, U. 2002. Approximierende B-Splines. , Institut für Mathematik, Universität Salzburg, Salzburg.Google Scholar
Benson, R. H. 1967. Muscle-scar patterns of Pleistocene (Kansan)ostracodes. In Essays in paleontology and stratigraphy; Raymond C. Moore commemorative volume. University of Kansas, Department of Geology, Special Publications, 2:211241.Google Scholar
Benson, R. H. 1976a. The evolution of the ostracode Costa analyzed by “Theta-Rho” difference. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, (NF) 18/19 (Suppl.): 127139.Google Scholar
Benson, R. H. 1976b. Testing the Messinian salinity crisis biodynamically: introduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 20:311.CrossRefGoogle Scholar
Benson, R. H. 1976c. Changes in the ostracodes of the Mediterranean with the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 20:147170.CrossRefGoogle Scholar
Benson, R. H. 1979. In search of lost oceans: a paradox of discovery, p. 379389 In Boucot, A. J. and Gray, J. (eds.), Historical biogeography, Plate tectonics, and the changing Environment. Oregon State University, Eugene, Oregon.Google Scholar
Benson, R. H. 1981. Form, function, and architecture of ostracode shells. Annual Review Earth Planetary Sciences, 9:5980.CrossRefGoogle Scholar
Benson, R. H. 1982a. Deformation, Da Vinci's concept of form, and the analysis of events in evolutionary history, p. 241277 In Gallitelli, E. M. (ed.), Palaeontology, essential of historical geology. STEM Mucchi, Modena.Google Scholar
Benson, R. H. 1982b. Comparative transformation of shape in a rapidly evolving series of structural morphotypes of the ostracod Bradleya, p. 147164 In Bate, R. H., Robinson, E. and Sheppard, L. M. (eds.) Fossil and Recent Ostracods. Ellis Horwood, Chichester, UK.Google Scholar
Benson, R. H. 1982c. On the measurement of morphology and its change. Paleobiology, 8:328339.Google Scholar
Benson, R. H. 1983. Biomechanical stability and sudden change in the evolution of the deep-sea ostracode Poseidonamicus. Paleobiology, 9:398413.Google Scholar
Benson, R. H. 1984. Estimating greater paleodepths with ostracodes, especially in past thermospheric oceans. Palaegeography, Palaeoclimatology, Palaeoecology, 48:107141.Google Scholar
Benson, R. H., Chapman, R. E., and Siegel, F. 1982. On the measurement of morphology and its change. Paleobiology, 8:328339 Not in text!.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York.Google Scholar
Bookstein, F. L. 1996. Biometrics, biomathematics and the morphometric synthesis. Bulletin of Matematical Biology, 58:313365.Google Scholar
Bookstein, F. L. 1997. Landmark methods for forms without landmarks: Localizing group differences in outline shape. Medical Image Analysis, 1:225243.Google Scholar
Brauneis, W. 2003. Morphomatica, Program version 1.3. Institut für Limnologie, Österreichische Akademie der Wissenschaften, Mondsee.Google Scholar
Chapman, R. E. 1990. Conventional Procrustes approaches, pp. 251268 In Rohlf, F. J. and Bookstein, F. L. (eds.) Proceedings of the Michigan morphometrics workshop. The University of Michigan Museum Zoology, Special Publication, 2. Ann Arbor, Michigan.Google Scholar
Ciampaglio, C. N., Kemp, M., and Mcshea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterisation and analysis of measure of disparity. Paleobiology, 27:695715.Google Scholar
Danielopol, D. L. 1980. On the carapace shape of some European interstitial Candoninae (Ostracoda). Proceedings of the Biological Society Washington, 93:743756.Google Scholar
Danielopol, D. L., and Casale, L. 1990. Long- and short- term perturbations of the Cytherissa lacusrtris population in Mondsee: a paleolimnological perspective, p. 209226 In Danielopol, D. L., Carbonel, P., Colin, J. P. (eds.), Cytherissa (Ostracoda), the Drosophila of Paleolimnology. (Scientific results of a multidisciplinary project on recent and fossil Ostracoda). Bulletin de l'Institut Geologique du Bassin d'Aquitaine, 4748, Bordeaux.Google Scholar
Danielopol, D. L., Geiger, W., Tölderer-Farmer, M., Orellana, C. P., and Terrat, M.-N. 1985. The Ostracoda of Mondsee: spatial and temporal changes during the last fifty years, p. 99121 In Danielopol, D. L., Schmidt, R. and Schultze, E. (eds.), Contributions to the paleolimnology of the Trumer lakes and the lakes Mondsee, Attersee and Traunsee (Upper Austria). Institut für Limnologie, Mondsee.Google Scholar
Danielopol, D. L., Geiger, W., Tölderer-Farmer, M., Orellana, C. P., and Terrat, M.-N. 1988. In search of Cypris and Cythere. A report on the evolutionary ecological project of limnic Ostracoda from Mondsee (Austria), p. 485500 In Hanai, T., (ed.) Evolutionary biology of Ostracoda, its fundamentals and applications. Elsevier Kodansha, Tokyo.Google Scholar
Danielopol, D. L., Handl, M., and Yin, Y. 1993. Benthic ostracods in the pre-alpine deep lake Mondsee. Notes on their origin and distribution, p. 465480 In McKenzie, K. and Jones, P. J. (eds.), Ostracoda in the earth and life sciences. Balkema, Rotterdam.Google Scholar
Danielopol, D. L., Ito, E., Wansard, G., Kamiya, T., Cronin, T., and Baltanás, A. 2002. Techniques for Collection and Study of Ostracoda, p. 6597 In Holmes, J. A. and Chivas, A. R. (eds.), The Ostracoda: Applications in Quaternary Research. The American Geophysical Union, Washington DC.CrossRefGoogle Scholar
Deuflhard, P., and Hohmann, A. 1995. Numerical analysis. A first course in scientific computation. De Gruyter, Berlin.CrossRefGoogle Scholar
Dryden, I. L., and Mardia, K. V. 1998. Statistical Shape Analysis. John Wiley & Sons, Chichester, UK.Google Scholar
Eble, G.J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology, 26: 5679.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation and the early saturation of morphological space. Paleobiology, 20: 320344.CrossRefGoogle Scholar
Foote, M. 1997. Sampling, taxonomic description, and our evolving knowledge of morphological diversity. Paleobiology, 23: 181206.CrossRefGoogle Scholar
Foster, D. W., and Kaesler, R. L. 1983. Intraspecific morphological variability of ostracods from carbonate and mixed carbonate-terrigenous depositional environments, p. 627639 In Maddocks, R. F. (ed.) Applications of Ostracoda. University of Houston Geosciences, Houston, Tx.Google Scholar
Fuhrmann, R., and Pietrzeniuk, E. 1991. Die Ostrakodenfauna des Interglazials von Gröbern (Kreis Gräfenhainichen). Altenbg. nat. wiss. Forsch. Altenburg, 5: 168193.Google Scholar
Gower, J. C. 1975. Generalized Procrustes Analysis. Psychometrica, 40:3351.Google Scholar
Hill, F. S., 1990. Computer graphics. McMillan Publishers Co., New York.Google Scholar
Hoschek, J., and Lasser, D. 1993. Fundamentals of computer aided geometric design. A. K. Peters, Wellesley, MA.Google Scholar
Kaesler, R. L., and Lohmann, K. C. 1976. Phenotypic variations of populations of Krithe producta with environment. Abhandlungen und Verhandlungen des Naturwissenschaftichen Vereins in Hamburg, (NF) 18/19 (Suppl.):279285.Google Scholar
Kaesler, R. L., and Waters, J. A. 1972. Fourier analysis of the ostracode margin. Geological Society of America Bulletin, 83: 11691178.CrossRefGoogle Scholar
Kain, E., and Wingo, S. 1998. MFC Answer Book: Solutions for Effective Visual C++ Applications. Addison-Wesley, Boston, MA.Google Scholar
Kuhl, F. P., and Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 9:236258.Google Scholar
Lestrel, P. E., ed. 1997. Fourier descriptors and their applications in Biology. Cambridge University Press, Cambridge.Google Scholar
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape. Mathematical Geology, 15: 659672.Google Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis, pp. 147166 In Rohlf, F.J. and Bookstein, F. L. (eds.) Proceedings of the Michigan Morphometries Workshop. Special Publication 2, UMMZ: Ann Arbor, Michigan.Google Scholar
Macleod, N., 1999. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology, 25:107138.Google Scholar
Majoran, S. 1990. Ontogenetic changes in the ostracod Cytherella cf. ovata Roemer from the Cenomanian of Algeria. Journal of Micropaleontology, 9: 3744.Google Scholar
Maness, T. R., and L. Kaesler, R. 1987. Ontogenetic changes in the carapace of Tyrrhenocythere amnicola (Sars) a hemicytherid ostracode. The University of Kansas Paleontological Contributions, 118: 115.Google Scholar
Mclellan, T. and Endler, J. A. 1998. The relative success of some methods for measuring and describing the shape of complex objects. Systematic Biology, 47:264281.Google Scholar
Meacham, C. A., and Duncan, T. 1993. MorphoSys, Automated Morphometric System, Version 1.29. University Herbarium, University of California at Berkeley, Berkeley, Ca.Google Scholar
O'Higgins, P. 1997. Methodological issues in the description of forms, p. 74105 In Lestrel, P.E. (ed.), Fourier descriptors and their applications in Biology. Cambridge University Press, Cambridge.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2002. Numerical recipes in C++: The art of scientific computing (2nd ed.). University Press, Cambridge.Google Scholar
Prossie, J. 1999. Programming Windows with MFC (2nd ed.). Microsoft Press, Grove City, OH.Google Scholar
Reyment, R. A. 1995. On multivariate morphometries applied to Ostracoda, pp. 4348 In Riha, J. (ed.) Ostracods and Biostratigraphy. AA Balkema, Rotterdam.Google Scholar
Reyment, R. A., and Abe, K. 1995. Morphometrics of Vargula hilgendorfi (Müller), (Ostracoda, Crustacea). Mitt. Hamb. Zool. Mus. Inst., 92: 325336.Google Scholar
Reyment, R. A., and Bookstein, F. L. 1993. Infraspecific variability in shape in Neobuntonia airella: an exposition of geometric morphometry, pp. 291314 In McKenzie, K. G. and Jones, P. J. (eds.) Ostracoda in the Earth and Life Sciences. AA Balkema, Rotterdam.Google Scholar
Reyment, R. A. Bookstein, F. L. Mckenzie, K., and Majoran, G. S. 1988. Ecophenotypic variation in Mutilus pumilus (Ostracoda) from Australia, studied by canonical variate analysis and tensor biometrics. Journal of Micropalaeontology, 7:1120.Google Scholar
Rogulj, B., Danielopol, D. L., Marmonier, P., and Pospisil, P. 1993. Adaptive morphology, biogeographical distribution and ecology of the species group Mixtacandona hvarensis (Ostracoda, Candoninae). Mémoires de Biospéologie, 20: 195207.Google Scholar
Rohlf, F. J. 1990. Morphometries. Annual Review of Ecology and Systematics, 21:299316.Google Scholar
Rohlf, F.J. 2001. Tpsdig, Program version 1.43. Department of Ecology and Evolution, State University of New York, Stony Brook, NY: http://life.bio.sunysb.edu/morph/soft-dataacq.html (14/4/03).Google Scholar
Rohlf, F. J., and Archie, J.W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology, 33:302317.CrossRefGoogle Scholar
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in Morphometries. Trends in Ecology and Evolution, 8:129132.Google Scholar
Rohlf, F. J., and Slice, D. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39: 4059.Google Scholar
Schweitzer, P. N., Kaesler, R. L., and Lohmann, G.P. 1986. Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas. Paleobiology, 12: 290301.Google Scholar
Schweitzer, P. N., Lohmann, G.P. 1990. Life-history and the evolution of ontogeny in the ostracode genus Cyprideis. Paleobiology, 16: 107125.Google Scholar
Siegel, A. F., and Benson, R. H. 1982. A robust comparison of biological shapes. Biometrics, 38:341350.Google Scholar
Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids. Journal of Zoology, 151:65122.Google Scholar
Waddington, C. H. 1968. The basic ideas of biology p. 141 In Waddington, C. H. (ed.) Towards a theoretical biology, 1. Prolegomena, Aldine Publishing Co., Chicago.Google Scholar
World Wide Web Consortium. 2000. Extensible Markup Language (XML) 1.0 (2nd ed.): http://www.w3.org/TR/REC-xml.Google Scholar
Yin, Y. 1997. Contributions to the morphology and ecology of Ostracoda Limnocytheridae and Candonidae. Comparative studies between Austrian and Chinese Crustacea. , Universität Wien, Wien.Google Scholar