Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:57:07.494Z Has data issue: false hasContentIssue false

UV and Visible Luminescence of Pr3+ Doped Oxides: New Materials

Published online by Cambridge University Press:  01 February 2011

Fabio Piccinelli
Affiliation:
[email protected], Univ. Verona, Dept. Science and Technology, Verona, Italy
Adolfo Speghini
Affiliation:
[email protected], Univ. Verona, DiSTeMeV, San Floriano, Verona, Italy
Konstantin Ivanovskikh
Affiliation:
[email protected], Utrecht University, CMI, Debye Institute for Nanomaterials Science, Utrecht, Netherlands
Andries Meijerink
Affiliation:
[email protected], Utrecht University, CMI, Debye Institute for Nanomaterials Science, Utrecht, Netherlands
Cees Ronda
Affiliation:
[email protected], Philips Research Europe-Aachen, Aachen, Germany
Marco Bettinelli
Affiliation:
[email protected], Univ. Verona, Dept. Science and Technology, Verona, Italy
Get access

Abstract

The garnet Ca3Sc2Si3O12 (CSSO) and the silico-carnotite Ca3Y2Si3O12 (CYSO) and Ca3Lu2Si3O12 (CLSO) materials, both undoped and doped with Pr3+, have been synthesized by solid state reaction at high temperature. The luminescence spectroscopy and the excited state dynamics of the materials have been studied upon VUV and X-ray excitation using synchrotron radiation. All doped samples have shown efficient 5d-4f emission upon direct VUV excitation of 5d levels, but only CSSO:Pr3+ shows luminescence upon interband VUV or X-ray excitation. The VUV excited emission spectra of CYSO:Pr3+ and CLSO:Pr3+ show features attributed to emission from two distinct sites accommodating the Pr3+ dopant. The decay kinetics of the Pr3+ 5d-4f emission in CSSO:Pr3+ upon VUV excitation across the conduction band are characterized by decay times in the range 25-28 ns with no significant rise after the excitation pulse. They appear to be faster upon X-ray irradiation than for VUV excitation. Weak afterglow components are attributed to defect luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shimomura, Y., Honma, T., Shigeiwa, M., Akai, T., Okamoto, K. and Kijima, N., J. Electrochem. Soc. 154, J35 (2007).Google Scholar
2. Yamane, H., Nagasawa, T., Shimada, M. and Endo, T., Acta Cryst. C53, 1367 (1997).Google Scholar
3. Mill', B. V., Belokoneva, E. L., Simonov, M. A. and Belov, N. V., J. Struct. Chem. 18, 321 (1977).Google Scholar
4. Novak, G. A. and Gibbs, G. V., Amer. Mineral. 56, 791 (1971).Google Scholar
5. Engel, G. and Cee, K., Z. Anorg. Allg. Chem. 621, 1803 (1995).Google Scholar
6. Kraus, W. and Nolze, G., PowderCell for Windows, version 2.3.Google Scholar
7. MAUD program, Lutterotti, L. and Gialanella, S., Acta Mater. 46, 101 (1998).Google Scholar
8. Shannon, R. D. and Prewitt, C. T., Acta Cryst. B25, 925 (1969).Google Scholar
9. Piccinelli, F., Speghini, A., Mariotto, G., Bovo, L. and Bettinelli, M., Rare Earths, J. (in press).Google Scholar
10. Babin, V., Krasnikov, A., Maksimov, Y., Nejezchleb, K., Nikl, M., Savikhina, T. and Zazubovich, S., Opt. Mater. 30, 30 (2007).Google Scholar
11. Nikl, M., Ogino, H., Yoshikawa, A., Mihokova, E., Pejchal, J., Beitlerova, A., Novoselov, A. and Fukuda, T., Chem. Phys. Lett. 410, 218 (2005).Google Scholar
12. Novoselov, A., Ogino, H., Yoshikawa, A., Nikl, M., Pejchal, J., Mares, J. A., Beitlerova, A., D'Ambrosio, C. and Fukuda, T., J. Cryst. Growth 287, 309 (2006).Google Scholar
13. Mürk, V., Namozov, B. and Yaroshevich, N., Rad. Measur. 24, 371 (1995).Google Scholar
14. Dorenbos, P., J. Lumin. 91, 155 (2000).Google Scholar
15. Özen, G., Forte, O., Di Bartolo, B. and Collins, J. M., J. Lumin. 125, 223 (2007).Google Scholar
16. Shimomura, Y., Kurushima, T., Shigeiwa, M. and Kijima, N., J. Electrochem. Soc. 155, J45 (2008).Google Scholar