Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:42:12.736Z Has data issue: false hasContentIssue false

Optical Absorption and Luminescence Study of the Effect of Thermal Treatments on the Porous Silicon Surface

Published online by Cambridge University Press:  10 February 2011

R. Plugaru
Affiliation:
Institute of Microtechnology, Bucharest, R-72225, Romania, [email protected]
G. Craciun
Affiliation:
Institute of Microtechnology, Bucharest, R-72225, Romania, [email protected]
M. Bercu
Affiliation:
Faculty of Physic, University of Bucharest, POBox MG 11, Romania
J. Rams
Affiliation:
Dept. Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain, [email protected]
J. Piqueras
Affiliation:
Dept. Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain, [email protected]
Get access

Abstract

The evolution of the cathodoluminescent emission bands of porous silicon at 420–480 nm, 540 nm and 640 nm under oxidizing and inert atmosphere annealings has been investigated and correlated to the structural reconstruction of the porous silicon surface during the treatments. Dry oxidation at low temperature of 450°C determines a less defected bonding interface structure of the growing oxide matrix comparatively with an oxidation treatment at 1000°C. The optical absorption band at 883 cm−1 observed in the 1000°C oxidized porous silicon is correlated to the presence of the interface defect centers. The quenching of the 540 nm and 640 nm emission bands in the high temperature oxidized porous silicon results from nonradiative transitions in the associated defect levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kanemitsu, Y., Okamoto, S., Phys. Rev. B 52 (4), p. R1696 (1997).Google Scholar
2. Quin, G. G., Liu, X.S., Ma, S.Y., Lin, J., Yao, G.Q., Lin, X.Y. and Lin, K.X., Phys. Rev. B, 55 (19), p. 12876 (1997).Google Scholar
3. Cullis, A. G., Canham, L.T., Williams, G. M., Smith, P.W. and Dosser, O.D., J. Appl. Phys. 75 (1), p. 49 3 (1994).Google Scholar
4. Letant, S. and Vial, J.C., J. Appl. Phys. 84 (2), p. 1041 (1998).Google Scholar
5. Gardelis, S. and Hamilton, B., J. Appl. Phys. 76 (9), p. 5327 (1994).Google Scholar
6. Chang, I.M. and Chen, Y.F., J. Appl. Phys. 82 (7), p. 3514 (1997).Google Scholar
7. Ito, T., Motoi, K., Arakaki, O., Hatta, A. and Hiraki, A., J. Appl. Phys. 33 (7), p.L 941 (1994).Google Scholar
8. Mimura, H., Futagi, T., Matsumoto, T., Nakamura, T. and Kanemitsu, Y., Jpn. J. Appl.Phys. 33, p. 586 (1994).Google Scholar
9. Rams, J., Mendez, B., Craciun, C., Plugaru, R., Piqueras, J., Appl. Phys. Lett., 74 (12), p. 1728 (1999).Google Scholar
10. Piqueras, J., Mendez, B., Plugaru, R., Craciun, G., Garcia, J.A., Remon, A., Appl. Phys A 68, p. 329 (1999).Google Scholar
11. Butturi, M. A., Carotta, M. C., Martinell, G., Passari, L., Youseff, G. M., Chirino, A. and Ghiotti, G., Solid State Commun. 10 (9), p.11 (1997).Google Scholar
12. Tsybeskov, L. and Fauchet, P. M., Appl.Phys.Lett. 64, p. 1963 (1994).Google Scholar
13. Craciun, G., Bercu, M., Flueraru, M., Marica, L., Bercu, C., Dafinei, C., Grecu, V., J.Molecular Structure, 129, p. 410 (1997).Google Scholar
14. Poindexter, E. H., Caplan, P. J., Deal, B. and Razouk, R. R., J. Appl. Phys. 52, p. 879 (1980).Google Scholar
15. Meyer, B. K., Petrova-Koch, V., Musnik, T., Linke, H., Ourliny, P., and Lehmann, V., Appl.Phys.Lett., 63 (14), p. 1930 (1993).Google Scholar