Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:58:38.083Z Has data issue: false hasContentIssue false

Molecular Modeling of the Dielectric Saturation in Proton Exchange Membranes

Published online by Cambridge University Press:  21 March 2011

Reginald Paul
Affiliation:
Chemistry Department, The University of Calgary, Canada T2N 1N4
Stephen J. Paddison
Affiliation:
Computational Materials Group, Motorola Inc., Los Alamos Research Park, Los Alamos, NM 87544
Get access

Abstract

A molecular statistical mechanical method is employed to compute the field dependant permittivity of water contained in the hydrophilic pores of hydrated proton exchange membranes. The anionic (-SO-3) groups in proximity to the pore walls generate spatially varying fields resulting in dielectric saturation, the effects of which are investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zawodzinski, T. A. Jr., Derouin, C., Radzinski, S., Sherman, R. J., Smith, V. T., Springer, T. E., and Gottesfeld, S., J. Electrochem. Soc., 140, 1041, (1993).Google Scholar
[2] Paddison, S. J., Pratt, L. R., Zawodzinski, T. A. Jr., and Reagor, D. W., Fluid Phase Equilibria, 150, 235, (1998).Google Scholar
[3] Paddison, S. J. and Zawodzinski, T. A. Jr., Solid State Ionics, 113–115, 333, (1998).Google Scholar
[4] Paddison, S. J., Pratt, L. R., and Zawodzinski, T. A. Jr., J. New Mater. Electrochem. Sys., 2, 183, (1999).Google Scholar
[5] Paddison, S. J., Paul, R., and Zawodzinski, T. A. Jr., in Proton Conducting Membrane Fuel Cells II, edited by Gottesfeld, S. and Fuller, T. F., PV 98-27, p 106, The Electrochemical Society Proceeding Series, Pennington, NJ (1999).Google Scholar
[6] Paddison, S. J., Paul, R., and Zawodzinski, T. A. Jr., J. Electrochem. Soc., 147, 617, (2000).Google Scholar
[7] Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media, (Pergamon Press), Chapter 2.Google Scholar
[8] Paul, R. and Paddison, S. J., J. Chem. Phys., submitted (2001).Google Scholar
[9] McQuarrie, D. A., Statistical Mechanics, (Harper & Row), Chapter 3.Google Scholar
[10] Bernal, J. D. and Fowler, R. H., J. Chem. Phys., 1, 515, (1933).Google Scholar
[11] Grønbech-Jensen, N., Hummer, G., and Beardmore, K. M., Mol. Phys., 92, 941 (1997).Google Scholar
[12] Nienhaus, G. and Deutch, J. M., J. Chem. Phys., 56, 1819, (1972).Google Scholar
[13] Paddison, S. J., Paul, R., Kreuer, Klaus-Dieter and Zawodzinski, T. A. Jr., in Direct Methanol Fuel Cells, edited by Narayanan, S., Gottesfeld, S. and Zawodzinski, T. A., PV 01-04, The Electrochemical Society Proceedings Series, Pennington, NJ (2001), in press.Google Scholar
[14] Paddison, S. J., Paul, R., and Pivovar, B. S., in Direct Methanol Fuel Cells, edited by Narayanan, S., Gottesfeld, S. and Zawodzinski, T. A., PV 01-04, The Electrochemical Society Proceedings Series, Pennington, NJ (2001), in press.Google Scholar