Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:25:37.488Z Has data issue: false hasContentIssue false

Microcrystalline Ceramic Composites by Active Filler Controlled Reaction Pyrolysis of Polymers

Published online by Cambridge University Press:  15 February 2011

Peter Greil
Affiliation:
Technical University of Hamburg-Harburg, Advanced Ceramics Group, Denickestr. 15, 2100 Hamburg 90, Germany
Michael Seibold
Affiliation:
Technical University of Hamburg-Harburg, Advanced Ceramics Group, Denickestr. 15, 2100 Hamburg 90, Germany
Tobias Erny
Affiliation:
Technical University of Hamburg-Harburg, Advanced Ceramics Group, Denickestr. 15, 2100 Hamburg 90, Germany
Get access

Abstract

Pyrolytic conversion of preceramic polymers such as polysilanes, -silazanes, or -siloxanes to ceramics may be significantly influenced by the resence of active filler dispersoids. Based on thermodynamic and microstructural considerations a variety of suitable polymer-filler systems can be found which allow the fabrication of microcrystalline composite materials with low dimensional change upon polymer- ceramic conversion. As an example the active filler controlled reaction pyrolysis of polysiloxane with addition of titanium powder was investigated. A composite material with microcrystalline titanium carbide inclusions embedded in an amorphous (< 1000 °C) or nanocrystalline (>1000 °C) silicon oxycarbide matrix was formed. Property changes with increasing pyrolysis temperature can be attributed to various microstructural transformations. Thus, a variety of potential fillers may be used to tailor the microstructure of polymer-derived ceramic composite materials in order to fabricate bulk materials and components with a broad range of compositions and properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Seyferth, D., Wiseman, G.H., Schwark, J.M., Yu, Y.F., Poutasse, C.A., in Inorpanic and Organometallic Polymers, ACS Symposium Series, vol.360, 143 (1987)Google Scholar
[2] Yu, Y.F. Mah, T.I., in Better Ceramics Through Chemistry II, MRS Symposia Proceedings, vol.73, 559 (1986)CrossRefGoogle Scholar
[3] Yajima, S., Hayashi, J., Omori, M., Okamura, K., Nature 261, pp. 683 (1976)Google Scholar
[4] Rice, R.W., Am.Ceram.Soc.Bull. 62, 889 (1983)Google Scholar
[5] Lipowitz, J., Rabe, J.A., Frevel, L.K., Miller, R.L., J.Mat.Sci. 25 2118 (1990)Google Scholar
[6] Seibold, M., Greil, P., in Adv.Mat.Processing 1, edt. Exner, H.E., Schumacher, V., DGM Inform.Ges., Oberursel, FRG 641 (1990)Google Scholar
[7] Greil, P., Seibold, M., in Ceramic Transactions, Vol. 19, Advanced Composite Materials, edt. Sacks, M.D., The Am.Ceram.Soc. Westerville, OH, 43 (1991)Google Scholar
[8] Seyferth, D., Bryson, N., Workmann, D.P., Sobon, C.A., J.Am.Ceram.Soc. 74 2687 (1991)Google Scholar
[9] Hurwitz, F.I., Heimann, P.J., Gyenkenyesi, J.Z., Masnovi, J., Bu, X.Y., Ceram. Eng.Sci.Proc. 12 1292 (1991).Google Scholar
[10] Erny, T., Seibold, M., Jarchow, O., Greil, P., to be publ. in J.Am.Ceram.Soc. 75 (1992)Google Scholar
[11] Seibold, M., Greil, P., to be publ. in J.Europ.Ceram.Soc. 8 (1992)Google Scholar
[12] Barin, I., Thermochemnical Data of Pure Substances, Verlag Chemie, Weinheim, Germany (1989)Google Scholar
[13] Toth, L.E., Transition Metal Carbides and Nitrides, Academic Press, London 1971 Google Scholar
[14] Greil, P., M, Seibold, J.Mat.Sci. 27, 1053 (1991)Google Scholar
[15] Renlund, G.M., Prochazka, S., Doremus, R.H., J.Mat.Res. 6 2716 and 2723 (1991).Google Scholar
[16] Jenkins, G., Kawamura, K., Polymeric Carbons – Carbon Fiber, Glass and Char, Cambridge University Press (1976)Google Scholar
[17] Chamberlain, M. B., 72 305 (1980)CrossRefGoogle Scholar
[18] Monthieux, M., Oberlin, A., Bouillon, E., Comp. Sci.Techn 37 21 (1990)Google Scholar