Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:29:35.006Z Has data issue: false hasContentIssue false

Localized Optical Excitations and Two-Exciton Spectroscopy of Phenylacetylene Dendrimers

Published online by Cambridge University Press:  10 February 2011

V. Chernyak
Affiliation:
Department of Chemistry, University of Rochester, Rochester, New York 14627
E. Y. Poliakov
Affiliation:
Department of Chemistry, University of Rochester, Rochester, New York 14627
S. Tretiak
Affiliation:
Department of Chemistry, University of Rochester, Rochester, New York 14627
S. Mukamel
Affiliation:
Department of Chemistry, University of Rochester, Rochester, New York 14627
Get access

Abstract

The one- and two-exciton manifolds of conjugated dendrimers possessing fractal geometries are studied using the Frenkel exciton model. Two-photon spectra can be used to determine both the magnitude and the sign of short-range coupling among segments. Self-similarity and the high degree of symmetry make it possible to compute the one-exciton states and the optical response with reduced numerical effort that scales linearly rather than exponentially with the number of generations. The third-order optical response and exciton scattering matrix are expressed in compact forms using irreducible representation of optical excitations, totally avoiding the expensive explicit calculation of two-exciton eigenstates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shortreed, M. R., Swallen, S. F., Shi, Z.-Y., Tan, W., Xu, Z., Moore, J. S., Kopelman, R., J. Phys. Chem. B 101, 6318 (1997).Google Scholar
[2] Kopelman, R., Shortreed, M. R., Shi, Z.-Y., Tan, W., Xu, Z., Devadoss, C., Moore, J. S., Bar-Haim, A., Klafter, Y., Phys. Rev. Lett. 78, 1239 (1997).Google Scholar
[3] Shortreed, M., Shi, Z.-Y., Kopelman, R., Mol. Cryst. Liq. Crist. 283, 95 (1996).Google Scholar
[4] Tomalia, D. A., Naylor, A. M., Goddard, W. A., Angew. Chem. Int. Ed. Engl. 29, 138(1990).Google Scholar
[5] Lothian-Tomalia, M. K., Hedstrand, D. M., Tomalia, D. A., Padias, A. B., Hall, H. K. Jr, Tetrahedon 53, 15495 (1997).Google Scholar
[6] Balzani, V., Campagna, S., Denti, G., Juris, A., Serroni, S., Venturi, M., Acc. of Chem. Res. 31, 26 (1998).Google Scholar
[7] Venturi, M., Serroni, S., Juris, A., Campagna, S., Balzani, V., Topics in Current Chemistry , 197 (Springer, Berlin, 1998).Google Scholar
[8] Freéchet, J., Science 263, 1710 (1994).Google Scholar
[9] Poliakov, E. Y., Chernyak, V., Tretiak, S., Mukamel, S., J. Chem. Phys. (in press).Google Scholar
[10] Xu, Z., Kahr, M., Walker, K. L., Wilkins, C. L., Moore, J. S., J. Am. Chem. Soc. 116, 4537 (1994).Google Scholar
[11] Devadoss, C., Bharathi, P., Moore, J. S., J. Am. Chem. Soc. 118, 9635 (1996).Google Scholar
[12] Kanis, D. R., Ratner, M. A., Marks, T. J., Chem. Rev. 94, 195 (1994).Google Scholar
[13] Brédas, J. L., Adant, C., Tackyx, P., Persoons, A., Pierce, B. M., Chem. Rev. 94, 243 (1994).Google Scholar
[14] Davydov, A.S., Theory of Molecular Excitons , (Plenum, New York, 1971).Google Scholar
[15] In Excitons , edited by Rashba, E. I., Sturge, M. D. (North-Holland, Amsterdam, 1982); V. B. Broude, E. I. Rashba, E. F. Sheka, Spectroscopy of Molecular Excitons (Springer, Berlin, 1985).Google Scholar
[16] Tretiak, S., Chernyak, V., Mukamel, S., J. Phys. Chem. B, 102, 3310 (1998).Google Scholar
[17] Mukamel, S., Principles of Nonlinear Optical Spectroscopy (University Press, Oxford, 1995).Google Scholar
[18] Chernyak, V., Mukamel, S., Phys. Rev. B 48, 2470 (1993); J. Chem. Phys. 100, 2974 (1994).Google Scholar
[19] In J-aggregates , edited by Kobayaschi, T. (World Scientific, Singapore, 1996).Google Scholar
[20] Chernyak, V., Wang, N., Mukamel, S., Phys. Rep. 263, 213 (1995).Google Scholar