Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T12:28:26.287Z Has data issue: false hasContentIssue false

Fabrication and Nonlinear Optical Characterization of Well-Ordered Nanopillar Arrays

Published online by Cambridge University Press:  11 February 2011

Chun-Wen Kuo
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Shuo-Wen Wu
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Peilin Chen
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Get access

Abstract

Size-controllable nanostructure fabrication has drawn much of research attention lately, because it may allow the tuning of optical, magnetic, catalytic and electric transport properties of materials. To achieve this goal, we need to investigate the size dependent behavior of materials. The most popular method for size-controlled nanostructure fabrication is e-beam lithography. However, e-beam lithography is not an efficient process for large area fabrication. We report here a novel method to produce large area, well-ordered, size-controlled nanopillar arrays. Nanopillar arrays are among the most studied nanostructures because of their potential applications in photonic crystals, data storage, and sensors. To fabricate nanopillar arrays, we have employed both single layer and double layer nanosphere lithography. Nanosphere lithography, which uses the close packed structure formed by monodispersed colloidal particles as template, is known to produce large area, well-ordered nanostructures on substrate surfaces. These nanostructures have been utilized as the masks in the reactive ion etching process. By carefully controlling the gas composition and etching time, various sizes of nanopillar arrays have been produced. To characterize the optical properties of these nanopillar arrays, surface nonlinear spectroscopy has been used to investigate the size dependent response of nanopillar arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feldstein, M.J., Keating, C.D., Liau, Y.-H., Natan, M.J., Scherer, N.F., J. Am. Chem. Soc. 119, 6338 (1997).Google Scholar
2. Hehn, M., Ounadjela, K., Bucher, J.-P., Rousseauz, F., Decanni, D., Bartenlian, B., Science, 272, 1782 (1996).Google Scholar
3. Heiz, U., Vanolli, F., Sanchez, A., Schneider, W.-D., J. Am. Chem. Soc. 120, 9668 (1998).Google Scholar
4. Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., Osifchin, R.G., Science, 273, 1690 (1996).Google Scholar
5. Haynes, C.L., Van Duyne, R.P., J. Phys. Chem. B, 105, 5599 (2001).Google Scholar
6. Fischer, U.C., Zingsheim, H.P., J. Vac. Sci. Technol., 19, 881 (1981).Google Scholar
7. Deckman, H.W., Dunsmuir, J.H., J. Vac. Sci. Technol. B, 1, 1109 (1983).Google Scholar
8. Hulteen, J.C., Van Duyne, R.P., J. Vac. Sci. Technol. A, 13, 1553 (1995).Google Scholar
9. Micheletto, R., Fukuda, H., Ohtsu, M., Langmuir, 11, 3333 (1995).Google Scholar
10. Lenzman, F., Li, K., Kitai, A.H., Stover, H.D.H., Chem. Mater., 6, 156 (1994).Google Scholar
11. Boneberg, J., Burmeister, F., Schafle, C., Leiderer, R., Reim, D., Frey, A., Herminghaus, S., Langmuir, 13, 7080 (1997).Google Scholar
12. Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J., Nature, 414, 289 (2001).Google Scholar
13. Braun, P.V., Wiltzius, P., Nature, 402, 603 (1999).Google Scholar
14. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S.; Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., Van Driel, H.M., Nature, 405, 437 (2000).Google Scholar
15. Jiang, P., Bertone, J.F., Colvin, V.L., V.L., , Science, 291, 453 (2001).Google Scholar
16. Han, S., Shi, X., Zhou, F., Nano Lett. 2, 97 (2002).Google Scholar
17. Poborchii, V.V., Tada, T., Kanayama, T., J. Appl. Phys., 91, 3299 (2002).Google Scholar
18. Krauss, P.R., Chou, S.Y., Appl. Phys. Lett. 71, 3174 (1997).Google Scholar
19. Born, A., Wiesendanger, R., Appl. Phys. A, 68, 131 (1999).Google Scholar
20. Nassiopoulos, A.G., Grigoropoulos, S., Papadimitriou, D., Appl. Phys. Lett. 69, 2267 (1996).Google Scholar
21. Hulteen, J.C., Treichel, D.A., Smith, M. T., Duval, M.L., Jensen, T.R., Van Duyne, R.P., J. Phys. Chem. B, 103, 3854 (1999).Google Scholar
22. Rakers, S., Chi, L.F., Fuchs, H., Langmuir, 13, 7121 (1997).Google Scholar
23. Baldelli, S., Eppler, A.S., Anderson, E., Shen, Y.R., Somorjai, G.A., J. Chem. Phys., 113, 5432 (2000).Google Scholar