Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:48:10.626Z Has data issue: false hasContentIssue false

Ultrafast Self-Assembly of Microscale Particles by Open-Channel Flow

Published online by Cambridge University Press:  31 January 2011

Sun Choi
Affiliation:
[email protected]@gmail.com, UC Berkeley, Berkeley Sensor and Actuator Centor (BSAC), Berkeley, California, United States
Albert P. Pisano
Affiliation:
[email protected], UC Berkeley, Berkeley Sensor and Actuator Centor (BSAC), Berkeley, California, United States
Tarek I. Zohdi
Affiliation:
[email protected], UC Berkeley, Department of Mechanical Engineering, Berkeley, California, United States
Get access

Abstract

We developed an ultrafast microfluidic approach to self-assemble microparticles in threedimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The experimental verifications of the assembly of various sizes of silica microspheres and silica gel microspheres within thin and long open microchannels by using this approach have been demonstrated. We anticipate that the presented technique will be widely used in semiconductor and Bio-MEMS (microelectromechanical Systems) fields because it offers a fast way to control 3D, microscale particle assemblies and also has superb compatibility with photolithography, which can lead to an easy integration of particle assembly with existing CMOS (complementary metal-oxide-semiconductor) and MEMS fabrication processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hänninen, P.; Soini, A.; Meltola, N.; Soini, J.; Soukka, J., & Soini, E., A new microvolume technique for bioaffinity assays using two-photon excitation, Nature Biotechnology, 2000, 18, 548550 .Google Scholar
2. Lilliehorn, T.; Nilsson, M.; Simu, U.; Johansson, S.; Almqvist, M.; Nilsson, J., & Laurell, T.;, Dynamic arraying of microbeads for bioassays in microfluidic channels, Sensors and Actuators B, 2005, 106, 851858.Google Scholar
3. Nie, Q.; Zhang, Y.; Zhang, J., & Zhang, M., Immobilization of polydiacetylene onto silica microbeads for colorimetric detection, J. Mater. Chem, 2006, 16, 546549.Google Scholar
4. Bayerl, T. M. A glass bead game, Nature, 2004, 427, 105106.Google Scholar
5. Rinne, S.A.; Garcia-Santamara, F., & Braun, P.V., Embedded cavities and waveguides in three-dimensional silicon photonic crystals, Nature, 2007, 2, 5256 Google Scholar
6. Braun, P. V.; & Wiltzius, P., Electrochemically grown photonic crystals, Nature 402, 603604, (1999).Google Scholar
7. Gracias, D.H.; Tien, J.; Breen, T.L.; Hsu, C., Whitesides G.M.;, Forming Electrical Networks in Three Dimensions by self-assembly, Science, 2000, 289, 11701172.Google Scholar
8. Mezzenga, R.; Ruokolainen, J.; Fredrickson, G.H.; Kramer, D.M.; Heeger, A.J., & Ikkala, O., Templating Organic Semiconductors via Self-Assembly of Polymer Colloids, Science, 2003, 299, 18711874.Google Scholar
9. Grzybowski, B.A.; Winkleman, A.; Wiles, J.A.; Brumer, Y., & Whitesides, G.M., Electrostatic self-assembly of macroscopic crystals using contact electrification, nature materials, 2003, 2, 241245.Google Scholar
10. Walcarius, A.; Sinottier, E.; Etienne, M., & Ghanbaja, J., Electrochemically assisted self-assembly of mesoporous silica thin films, nature materials, 2007, 6, 602608.Google Scholar
11. Qin, D.; Xia, Y;, Xu, B.; Yang, H.; Zhu, C., & Whitesides, G. M., Fabrication of Ordered Two-Dimensional Arrays of Micro-and Nanoparticles Using Patterned Self-Assembled Monolayers as Templates, Adv. Mater., 1999, 11, 14331437.Google Scholar
12. Kim, E.; Xia, Y.; & Whitesides, G.M., Two- and Three-Dimensional Crystallization of Polymeric Microspheres by Micromolding in Capillaries, Adv. Mater., 1996, 8, 245247.Google Scholar
13. Dushkin, C.D.; Yoshimura, H & Nagayama, K., “Nucleation and Growth of Two-Dimensional Colloidal Crystals”, Chemical Physics Letters 204, 455 (1993).Google Scholar
14. Fialkowski, M.; Bitner, A., & Grzybowski, B.A., Self-assembly of polymeric microspheres of complex internal structures, nature materials, 2005, 4, 9397.Google Scholar
15. Chung, S.E.; Park, W.; Shin, S.; Lee, S.A., & Kwon, S., Guided and fluidic self-assembly of microstructures using railed microfluidic channels, nature materials, 2008, 7, 581587.Google Scholar
16. Bowden, N.; Terfort, A.; Carbeck, J., & Whitesides, G.M., Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays, science, 1997, 276, 233235.Google Scholar
17. Denkov, N.D.; Velev, O.D.; Kralchevsky, P.A.; Ivanov, I.B.; Yoshimura, H., & Nagayama, K., Two-Dimensional Crystallization, Nature, 1993, 361, 26.Google Scholar
18. Denkov, N.D.; Velev, O.D.; Kralchevsky, P.A.; Ivanov, I.B.; Yoshimura, H., & Nagayama, K., Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir, 1992, 8, 31833190.Google Scholar
19. Dimitrov, A.S., & Nagayama, K., Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, 1996, 12, 13031311.Google Scholar
20. Yamaki, M., Higo, J., & Nagayama, K., Size-Dependent Separation of Colloidal Particles In Two-Dimensional Convective Self-Assembly, Langmuir, 1995, 11, 29752978.Google Scholar
21. Yin, Y.; Lu, Y.; Gates, B.; Younan Xia, Y., Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, J. Am. Chem. Soc. 2001, 123, 87188729.Google Scholar
22. Su, G.; Guo, Q.; Palmer, R.E., Colloidal lines and strings. Langmuir 2003, 19, 96699671.Google Scholar
23. Golding, R.K.; Lewis, P.C.; Kumacheva, E.; Allard, M.; Sargent, E.H., In situ study of colloid crystallization in constrained geometry. Langmuir 2004, 20, 14141419.Google Scholar
24. Kralchevsky, P.A. & Denkov, N.D., Capillary forces and structuring in layers of colloid particles, Curr. Opin. Colloid Interface Sci., 2001, 6, 383401.Google Scholar