Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:12:07.185Z Has data issue: false hasContentIssue false

Theory of Point Defects and Interfaces

Published online by Cambridge University Press:  10 February 2011

Chris G Van de Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304; [email protected]
Jörg Neugebauer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abt. Theorie, Faradayweg 4-6, D-14195 Berlin, Germany
Get access

Abstract

First-principles theoretical results can predict and explain a variety of materials properties of the nitride semiconductors. For n-type GaN, we summarize the current understanding about incorporation of unintentional donor impurities, as opposed to nitrogen vacancies. For p-type GaN, we discuss the cause of the limited doping levels, and the role of hydrogen. We describe the role of gallium vacancies in the yellow luminescence, and the interaction between these vacancies and donor impurities. Finally, we discuss our first-principles investigations of the atomic and electronic structure of heterojunction interfaces between the III-nitrides, and provide values for natural band lineups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B 50, 8067 (1994).Google Scholar
[2] Neugebauer, J. and Van de Walle, C. G., in Proceedings of the 22th International Conference on the Physics of Semiconductors, Vancouver, 1994, edited by Lockwood, D. J. (World Scientific Publishing Co Pte Ltd., Singapore), p. 2327.Google Scholar
[3] Neugebauer, J. and Van de Walle, C. G., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Ponce, F. A., and Nakamura, S., Materials Research Society Symposia Proceedings, Vol. 395 (Materials Research Society, Pittsburgh, Pennsylvania), p. 645.Google Scholar
[4] Neugebauer, J. and Van de Walle, C. G., Phys. Rev. Lett. 75, 4452 1995).Google Scholar
[5] Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 68, 1829 1996).Google Scholar
[6] Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
[7] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).Google Scholar
[8] Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
[9] Neugebauer, J. and Van de Walle, C. G., Proc. Mater. Res. Soc. Symp. 339, 687 (1994).Google Scholar
[10] Stumpf, R. and Scheffler, M., Comp. Phys. Commun. 79, 447 (1994).Google Scholar
[11] Neugebauer, J. and Van de Walle, C. G., Proc. Mater. Res. Soc. Symp. 408 (1996).Google Scholar
[12] Van de Walle, C. G., Laks, D. B., Neumark, G. F., and Pantelides, S. T., Phys. Rev. B 47, 9425 (1993).Google Scholar
[13] Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B 51, 17 255 (1995).Google Scholar
[14] Seifert, W., Franzheld, R., Butter, E., Sobotta, H., and Riede, V., Cryst. Res. & Technol. 18, 383 (1983).Google Scholar
[15] Chung, B.-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
[16] Götz, W., Johnson, N. M., Chen, C., Liu, H., Kuo, C., and Imler, W., Appl. Phys. Lett. 68, 3114 (1996).Google Scholar
[17] Götz, W. et al., these proceedings.Google Scholar
[18] Perlin, P., Suski, T., Teisseyre, H., Leszczyński, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., and Moustakas, T. D., Phys. Rev. Lett. 75, 296 (1995).Google Scholar
[19] Wetzel, C., Suski, T., Ager III, J. W., Walukiewicz, W., Fisher, S., Meyer, B. K., Grzegory, I., and Porowski, S., Proc. ICPS-23 (World Scientific, Singapore, 1996), p. 2929.Google Scholar
[20] Yi, G.-C. and Wessels, B. W., Appl. Phys. Lett. 69, 3028 (1996).Google Scholar
[21] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
[22] Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
[23] Neugebauer, J. and Van de Walle, C. G., in Proceedings of the 23rd International Conference on the Physics of Semiconductors, Berlin, 1996, edited by Scheffler, M. and Zimmermann, R. (World Scientific Publishing Co Pte Ltd., Singapore, 1996). p. 2849.Google Scholar
[24] Van de Walle, C. G. (unpublished).Google Scholar
[25] Zhang, X., Kung, P., and Razeghi, M., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Ponce, F. A., Edmond, J. A., and Nakamura, S. (MRS Symposia Proceedings, World Scientific, Singapore, 1995), Vol. 395.Google Scholar
[26] Götz, W., Johnson, N., Walker, J., Bour, D. P., Amano, H., and Akasaki, I., in Proceedings of the 6th International Conference on SiC and Related Materials, Kyoto, Japan, Sept. 18–21, 1995, edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H., Inst. Phys. Conf. Ser. No 142 (IOP Publishing, Bristol, 1996), 1031.Google Scholar
[27] Kim, W., Salvador, A., Botchkarev, A. E., Aktas, O., Mohammad, S. N., and Morkoç, H., Appl. Phys. Lett. 69, 559 (1996).Google Scholar
[28] Kaneda, N., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys. 35, L468 (1996).Google Scholar
[29] Singh, R., Molnar, R. J., Ünlü, M. S., and Moustakas, T. D., Appl. Phys. Lett. 64, 336 (1994).Google Scholar
[30] Grieshaber, W., Schubert, E. F., Goepfert, I. D., Karlicek, R. F. Jr., Schurman, M. J., and Tran, C., J. Appl. Phys. 80, 4615 (1996).Google Scholar
[31] Zhang, X., Kung, P., Saxler, A., Walker, D., Wang, T., and Razeghi, M., Acta Phys. Polonica A 88, 601 (1995).Google Scholar
[32] Götz, W., Romano, L. T., Krusor, B. S., Johnson, N. M., and Molnar, R. J., Appl. Phys. Lett. 69, 242 (1996).Google Scholar
[33] Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980).Google Scholar
[34] Niebuhr, R., Bachem, K., Dombrowski, K., Maier, M., Pletschen, W., and Kaufmann, U., Electron, J.. Mater. 24, 1531 (1995).Google Scholar
[35] Suski, T., Perlin, P., Teisseyre, H., Leszczyński, M., Grzegory, I., Jun, J., Bo–kowski, M., and Porowski, S., Appl. Phys. Lett. 67, 2188 (1995).Google Scholar
[36] Sánchez, F. J., Basak, D., Sánchez-García, M. A.. Calleja, E., Muñoz, E., Izpura, I., Calle, F., Tijero, J. M. G., Beaumont, B., Lorenzini, P., Gibart, P., Cheng, T. S., Fozon, C. T., and Orton, J. W., MRS Internet J. Nitride Semicond. Res. 1, 7 (1996).Google Scholar
[37] Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
[38] Böer, K. W., Survey of Semiconductor Physics (Van Nostrand Reinhold, New York, 1990), p. 629.Google Scholar
[39] Point Defects in Crystals, edited by Watts, R. K. (John Wiley & Sons, New York, 1977), p. 248ff.Google Scholar
[40] Dean, P. J., Phys. Stat. Sol. (a) 81, 625 (1984).Google Scholar
[41] Franciosi, A. and Van de Walle, C. G., Surface Science Reports Vol. 25, Nos. 1–4, pp. 1140 (1996).Google Scholar
[42] Van de Walle, C. G. and Neugebauer, J. (unpublished).Google Scholar
[43] Martin, G., Botchkarev, A., Rockett, A., and Morkoç, H., Appl. Phys. Lett. 68, 2541 (1996).Google Scholar
[44] Albanesi, E. A., Lambrecht, W. R. L., and Segall, B., J. Vac. Sci. Technol. B 12, 2470 (1994).Google Scholar
[45] Chen, X., Hua, X., Hu, J., Langlois, J.-M., and Goddard, W. A. III, Phys. Rev. B 53, 1377 (1996).Google Scholar