Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T15:06:47.075Z Has data issue: false hasContentIssue false

Synthesis of Biocompatible Magnetic Iron Oxide (γ-Fe2O3 and Fe3O4) Nanoparticles by a Modified Polyol Process for Biomedical Applications

Published online by Cambridge University Press:  01 February 2011

Georgia Basina
Affiliation:
Ioannis Panagiotopoulos
Affiliation:
[email protected], University of Ioannina, Materials Science & Engineering, Ioannina, Greece
Eamonn Devlin
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
George Hadjipanayis
Affiliation:
[email protected], University of Delaware, Department of Physics & Astronomy, Newark, Delaware, United States
Levent Colak
Affiliation:
[email protected], University of Delaware, Department of Physics & Astronomy, Newark, Delaware, United States
Constantinos Hadjipanayis
Affiliation:
[email protected], Emory University school of Medicine, Department of Neurological Surgery, Atlanta, Georgia, United States
Hui Mao
Affiliation:
[email protected], Emory University School of Medicine, Department of Radiology, Atlanta, Georgia, United States
Georgios Diamantopoulos
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
Michael Fardis
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
Georgios Papavasileiou
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
Dimitrios Niarchos
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
Vasilis Tzitzios
Affiliation:
[email protected], NCSR DEMOKRITOS, Materials Science, Athens, Greece
Get access

Abstract

Highly crystalline superparamagnetic Fe3O4 nanoparticles coated by poly-vinylpyrrolidone (PVP) were prepared by simultaneous thermal decomposition of ferrous and ferric inorganic salts in polyethylene glycol (PEG) with molecular weight 200. The magnetic particles have a diameter in the range of 8-15 nm, and after exchange with citric acid diammonium salt, they transform into very stable super hydrophilic colloidal solutions. The presence of magnetite phase was confirmed using powder X-rays diffraction (XRD) and Mössbauer spectroscopy, while thermogravimetric analysis and FT-IR spectroscopy confirmed the presence of PVP or citrate anions on the nanoparticles surface. The magnetic properties revealed superparamagnetic behavior, with the composite material showing a saturation magnetization up to 57 emu/g. The Fe3O4 nanoparticles prepared by this modified polyol process are suitable for biomedical applications because of the biocompatibility of citrate anions. Magnetic hyperthermia experiments in neutral water solutions shows that the particles induce fast heating rates with specific absorption rate (SAR) values which reached 57.53 W/gFe, when the concentration of iron is 11.2 mgFe/ml.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yoon, M., Kim, Y. M., Kim, Y., Volkov, V., Song, H. J., Park, Y. J., Vasilyak, S. L. and Park, I. W., J. Magn. Magn. Mater., 265, 357 (2003)Google Scholar
2 Teng, W., Liang, X. Y., Rahman, S. and Yang, H., Adv. Mater 17, 2237 (2005)Google Scholar
3 Oliveira, L. C. A., Petkowicz, D. I., Smaniotto, A. and Pergher, S. B. C., Water Res. 38, 3699 (2004)Google Scholar
4 Wu, R. C., Qu, H. H., He, H. and Yu, Y. B., Appl. Catal. B 48, 49 (2004)10.1016/j.apcatb.2003.09.006Google Scholar
5 Pankurst, Q. A., Connoly, J., Jones, S. K. and Dobson, J., J. Phys. D Appl. Phys., 36, R167 (2003)Google Scholar
6 Berry, C. C. and Curtis, A. S. G., J. Phys. D Appl. Phys., 36, 198 (2003)Google Scholar
7 Gupta, A. K. and Gupta, M., Biomaterials 26, 3995 (2005)Google Scholar
8 Berry, C. C., Mater. Chem. 15, 543 (2005)10.1039/B409715GGoogle Scholar
9 Lu, A. H., Salabas, E. L. and Schuth, F., Angew. Chem. Int. Ed. 46, 1222 (2007)10.1002/anie.200602866Google Scholar
10 Lee, H. Y., Lee, S. H., Xu, C., Xie, J., Lee, J. H., Wu, B., Koh, A. L., Wang, X., Sinclair, R., Wang, S. X., Nishimura, D. G., S, Biswall, Sun, S., Cho, S. H. and Chen, X., Nanotechnology 19, 165101 (2008)Google Scholar
11 Liu, J., Sun, Z., Deng, Y., Zou, Y., Li, C., Guo, X., Xiong, L., Gao, Y., Li, F. and Zhao, D., Angew. Chem. Int. Ed. 48 (32), 5875 (2009)Google Scholar
12 Zou, X., Ying, E. and Dong, S., Nanotechnology 17, 4758 (2006)10.1088/0957-4484/17/18/038Google Scholar
13 Barick, K. C., Aslam, M., Lin, Y. P., Bahadur, D., Prasad, P. V. and Dravid, V. P., J. Mater. Chem. 19, 7023 (2009)Google Scholar