Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:18:17.001Z Has data issue: false hasContentIssue false

Study on ZrO2 Deposited Directly on Si as an Alternative Gate Dielectric Material

Published online by Cambridge University Press:  10 February 2011

Wen-Jie Qi
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Renee Nieh
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Byoung Hun Lee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Youngjoo Jeon
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Laegu Kang
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Katsunori Onishi
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Jack C. Lee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758
Get access

Abstract

Reactive-magnetron-sputtered ZrO2 thin film has been deposited on Si directly for gate dielectric application. Both structural and electrical properties of the ZrO2 film have been investigated. An amorphous structure for 30Å ZrO2 and a semi-amorphous structure for 200Å ZrO2 have been revealed. The sputtered film shows a good stoichiometry and a good structural stability of ZrO2 based on the X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy data. Thin equivalent oxide thickness of about 11.5Å was obtained without the consideration of quantum mechanical effects. A low leakage of less than 10−2 A/cm2 at ±1V relative to the flat band voltage was obtained for this 11.5Å equivalent oxide thickness Pt/ZrO2/Si structure. High effective dielectric breakdown and superior reliability properties have been demonstrated for ZrO2 gate dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hubbard, K. J., and Schlom, D. G., J. Mater. Res., 11 (11), 2757 (1996)Google Scholar
2 Guo, Xin, Ma, T. P., Tamagawa, T., and Halpern, B. L., Technical Digest of IEDM 1998, p.377 Google Scholar
3 He, B., Ma, T., Campbell, S. A., and Gladfelter, W. L., Technical Digest of IEDM 1998, p. 1038 Google Scholar
4 Park, Donggun, Lu, Qiang, King, Tsu-Jae, Hu, Chenming, Kalnitsky, Alexander, Tay, Sing-Pin, and Cheng, Chia-Cheng, Technical Digest of IEDM 1998, p. 381 Google Scholar
5 Luan, H. F, Wu, B. Z., Kang, L. G., Kim, B. Y., Vrtis, R., Roberts, D., and Kwong, D. L., Technical Digest of IEDM 1998, p. 609 Google Scholar
6 McKee, R. A., Walker, F. J., and Chisholm, M. F., Physical Review Letters, 81 (14), 3014 (1998)Google Scholar
7 Balog, M., Schieber, M., Michman, M., and Patai, S., Thin Solid Films, 47, 109 (1977)Google Scholar
8 Kralik, Balazs, Chang, Eric K., and Louie, Steven G., Physical Review B, 57 (12), 7027 (1998)Google Scholar
9 French, R. H., Glass, S. J., Ohuchi, F. S., Xu, Y. -N., and Ching, W. Y., Physical Review B, 49 (8), 5133 (1994)Google Scholar
10 Russak, Michael A., Jahnes, Christopher V., and Katz, Eric P., J. Vac. Sci. Technol. A 7(3), 1248 (1989)Google Scholar
11 Cameron, M. A., and George, S. M., Thin Solid Films, 348, 90 (1999)Google Scholar
12 Martin, P. J., Netterfield, R. P., and Sainty, W. G., J. Appl. Phys. 55 (1), 235 (1983)Google Scholar
13 Stemper, A. K., Greve, D. W., and Schlesinger, T. E., J. Appl. Phys. 70 (4), 2046 (1991)Google Scholar
14 Ingel, R. P., and Lewis, D. III, J. Am. Ceram. Soc., 69 (4), 325 (1986)Google Scholar
15 Shappir, Joseph, Anis, Ayal, and Pinsky, Ida, IEEE Tran. Electron Devices, ED-33, 442 (1986)Google Scholar
16 Hwang, Cheol Seong, and Kim, Hyeong Joon, J. Mater. Res., 8 (6), 1361 (1993)Google Scholar
17 Balog, M., Schieber, M., Patai, S., and Michman, M., J. Crystal Growth, 17, 298 (1972)Google Scholar
18 Samara, G. A., J. Appl. Phys., 68 (8), 4214 (1990)Google Scholar
19 Ma, Z., Allen, L. H., Physical Review B, 49, 13501 (1994)Google Scholar