Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:00:26.507Z Has data issue: false hasContentIssue false

Studies on Ferroelectric Liquid Crystal Tolan Derivatives Designed for Nonlinear Optical Applications

Published online by Cambridge University Press:  15 February 2011

David M. Walba
Affiliation:
Department of Chemistry and Biochemistry and Optoelectronic Computing Systems Center, University of Colorado, Boulder, CO 80309-0215
James A. Rego
Affiliation:
Department of Chemistry and Biochemistry and Optoelectronic Computing Systems Center, University of Colorado, Boulder, CO 80309-0215
Noel A. Clark
Affiliation:
Department of Physics and Optoelectronic Computing Systems Center, University of Colorado, Boulder, CO 80309-0390
Renfan Shao
Affiliation:
Department of Physics and Optoelectronic Computing Systems Center, University of Colorado, Boulder, CO 80309-0390
Get access

Abstract

The structure and properties of a series of ferroelectric liquid crystal (FLC) guests possessing a tolan unit in the core are presented. The data shows that in racemic smectic C hosts, the o-nitroalkoxytolan unit can be oriented along the polar axis in the FLC thin films, affording interesting new materials for NLO applications. The data are consistent with basic expectations regarding the structure of the FLC host-guest system. There are, however, interesting deviations from expectation suggesting that for some guests there is a large and unexplained effect of host structure on the properties of doped FLC phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 This is paper number 16 in the series “Design and Synthesis of Ferroelectric Liquid Crystals.” For previous installments, see: Walba, D. M., Ros, M. B., Sierra, T., Rego, J. A., Clark, N. A., Shao, R., Wand, M. D., Vohra, R. T., Arnett, K. E. and Velsco, S. P., Ferroelectrics, 121, 247257 (1991) and references therein.CrossRefGoogle Scholar
2 For a chemistry-oriented review see: Walba, D. M., in Advances in the Synthesis and Reactivity of Solids, edited by Mallouk, T. E. (JAI Press Ltd, Greenwich, Connecticut, 1991), pp. 173235.Google Scholar
3 Clark, N. A. and Lagerwall, S. T., Appl. Phys. Lett., 36, 899901 (1980).Google Scholar
4 Walba, D. M., Slater, S. C., Thurmes, W. N., Clark, N. A., Handschy, M. A. and Supon, F., J. Am. Chem. Soc., 108, 52105221 (1986).Google Scholar
5 Kobayashi, S., Ishibashi, S. and Tsuru, S., Mol. Cryst. Liq. Cryst. Letters, 7, 105110 (1990).Google Scholar
6 Kuczynski, W. and Stegemeyer, H., Chem. Phys. Lett., 70, 123 (1980); L. A. Beresnev, L. M. Blinov, V. A. Baikalov, E. P. Pozhidayev, G. V. Purvanetskas and A. I. Pavluchenko, Mol. Cryst. Liq. Cryst, 89, 327–338 (1982).Google Scholar
7 Vtyurin, A. N., Ermakov, V. P., Ostrovskii, B. I. and Shabanov, V. F., Phys. Status Solidi B,107, 397402 (1981); N. M. Shtykov, M. I. Barnik, L. A. Beresnev and L. M. Blinov, Mol. Cryst. Liq. Cryst, 124, 379–390 (1985).Google Scholar
8 Williams, D. J., Angew. Chem. Int. Ed. Engl., 23, 690703 (1984).CrossRefGoogle Scholar
9 Ozaki, M., Utsumi, M., Gotou, T., Morita, Y., Daido, i. K., Sadohara, Y. and Yoshino, K., Ferroelectrics, 121, 259274 (1991).CrossRefGoogle Scholar
10 Walba, D. M., Ros, M. B., Clark, N. A., Shao, R., Robinson, M. G., Liu, J.-Y., Johnson, K. M. and Doroski, D., J. Am. Chem. Soc., 113, 54715474 (1991).Google Scholar
11 Eimerl, D., Ferroelectrics 72, 95 (1987).CrossRefGoogle Scholar
12 Eaton, D.F. “Nonlinear Optical Materials: The Great and Near Great,” in Materials for Nonlinear Optics: Chemical Perspectives, Stucky, G. D. (Ed.); American Chemical Society, Washington, DC, 1991; Vol.455, pp 128156.Google Scholar
13 Inukai, T., Saitoh, S., Inoue, H., Miyazawa, K., Terashima, K. and Furukawa, K., Mol. Cryst.Liq. Cryst., 141, 251 (1986).Google Scholar
14 Walba, D. M., Ros, M. B., Clark, N. A., Shao, R., Johnson, K. M., Robinson, M. G., Liu, J. Y. and Doroski, D., in Materials for Nonlinear Optics: Chemical Perspectives, edited by Stucky, G. D. (American Chemical Society, Washington, DC, 1991), pp. 484496; D. M. Walba, M. B. Ros, N. A. Clark, R. Shao, K. M. Johnson, M. G. Robinson, J. Y. Liu and D. Doroski, Mol. Cryst. Liq. Cryst., 198, 51–60 (1991).CrossRefGoogle Scholar
15 Tam, Wilson and Eaton, David (private communication).Google Scholar
16 Goodby, J. W., Waugh, M. A., Stein, S. M., Chin, E., Pindak, R. and Patel, J. S., I. Am. Chem. Soc., 111, 81198125 (1989); H. T. Nguyen, R. J. Twieg, M. F. Nabor, N. Isaert and C. Destrade, Ferroelectrics, 121, 187–204 (1991).Google Scholar
17 Seto, K., Shimojitosyo, H., Imazaki, H., Matsubara, H. and Takahashi, S., Mol. Cryst. Liq. Cryst. Letters, 7, 15 (1990).Google Scholar
18 Wu, S.-T. and Cox, R. J., J. Appl. Phys., 64, 821826 (1988); S.-T. Wu, U. Finkenzeller and V. Rieffenrath, J. Appl. Phys. 65, 4372–4376 (1989); S.-T. Wu and H. T. Nguyen, J. Appl. Phys. 66, 2332–2337 (1989).Google Scholar
19 Keller, P., Ferroelectrics, 58, 3 (1984).Google Scholar
20 Siemensmeyer, K. and Stegemeyer, H., Chem. Phys. Lett., 148, 409412 (1988).Google Scholar