Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T08:52:14.148Z Has data issue: false hasContentIssue false

Structure of Cu Ions in (Cu + Halogen or Chalcogen)-Ion Implanted Silica Glasses

Published online by Cambridge University Press:  01 February 2011

Kohei Fukumi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Akiyoshi Chayahara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Hiroyuki Kageyama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Naoyuki Kitamura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Kohei Kadono
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Atsushi Kinomura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Yoshiyuki Mokuno
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Yuji Horino
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Junji Nishii
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center, 1–8–31, Midorigaoka, Ikeda, Osaka, 563–8577, Japan
Get access

Abstract

Structure of Cu ions in (Cl+Cu)-, (Br+Cu)-, (I+Cu)-, (S+Cu)- and (Se+Cu)-ion implanted silica glasses has been studied by x-ray absorption and optical absorption spectroscopies. Cu ions formed Cu-O bonds in the as-implanted glasses, due to the homogeneous distribution of Cu ions and the low local concentration of halogen and chalcogen ions in silica glass. Heat treatment at about 600°C caused the formation of bonds between Cu ions and halogen/chalcogen ions without forming Cu halide or chalcogenide crystals. It was deduced that the formation of these bonds was controlled by the diffusion of Cu ions in silica glass. On the other hands, it was inferred that the formation of Cu halide and chalcogenide crystals was controlled not only by the diffusion of halogen/chalcogen ions but also by the diffusion of matrix ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fukumi, K., Chayahara, A., Kitamura, N., Akai, T., Hayakawa, J., Fujii, K. and Satou, M., J. Non-Cryst. Solids 178, 155 (1994).Google Scholar
2. Fukumi, K., Chayahara, A., Kageyama, H., Kadono, K., Akai, T., Kitamura, N., Mizoguchi, H., Horino, Y., Makihara, M., Fujii, K. and Hayakawa, J., J. Non-Cryst. Solids 259, 93 (1999).Google Scholar
3. Pham, M.T., Möller, D., Hüller, J. and Albrecht, J., J. Appl. Phys. 79[8], 3915 (1996).Google Scholar
4. Meldrun, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D. and Henderson, D.O., Nucl. Instrum. Methods B148, 957 (1999).Google Scholar
5. Nakao, S., Wang, S.X., Wang, L.M., Ikeyama, M., Miyagawa, Y. and Miyagawa, S., Nucl. Instrum. Methods B175/177, 202 (2001).Google Scholar
6. White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Hembree, D.M. Jr, Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R. and Magruder, R.H., J. Appl. Phys. 79[4], 1876 (1996).Google Scholar
7. Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., Introduction to Ceramics, 2nd edition, (Wiley, New York, 1960), Chap. 9, pp. 381447.Google Scholar
8. Brese, N.E. and O'Keeffe, M., Acta Cryst. B47, 192 (1991).Google Scholar
9. Stern, E.A., Sayers, D.E. and Lytle, F.W., Phys. Rev. B11[12], 4836 (1975).Google Scholar
10. Teo, B.K. and Lee, P.A., J. Am. Chem. Soc. 101[11], 2815 (1979).Google Scholar
11. Fukumi, K., Chayahara, A., Kageyama, H., Kinomura, A., Mokuno, Y., Kitamura, N., Kadono, K., Horino, Y. and Nishii, J., Nucl. Instrum. Methods B206, 353 (2003).Google Scholar
12. Fukumi, K., Chayahara, A., Kinomura, A., Kageyama, H., Kadono, K., Kitamura, N., Nishii, J. and Horino, Y., J. Mat. Res. 18[4] 885 (2003).Google Scholar
13. Bianconi, A., in X-ray Absorption: Principl, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Weily, New York, 1988), Chap. 11, pp. 573662.Google Scholar
14. Freer, R., J. Mat. Sci. 15, 803 (1980).Google Scholar
15. Tsouskala, D., Tsamis, C. and Normand, P., J. Appl. Phys. 89, 7809 (2001).Google Scholar
16. Kalen, J. D., Boyce, R. S. and Cawley, D., J. Am. Ceram. Soc. 74, 203 (1991).Google Scholar
17. McMrayer, J. D., Swanson, R. M. and Sigmon, T. W., J. Electrochem. Soc. 133, 1242 (1986).Google Scholar
18. Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D. and Oldham, W. G., J. Electrochem. Soc. 140, 2427 (1993).Google Scholar
19. Vengurlekar, A. S., Ramanathan, K. V. and Karulkar, V. T., J. Electrochem. Soc. 132, 1172 (1985).Google Scholar
20. Kirchhof, J., Unger, S., Klein, K.-F. and Knappe, B., J. Non-Cryst. Solids, 181, 266 (1995).Google Scholar