Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:27:40.673Z Has data issue: false hasContentIssue false

Soft-Landings, Hard Rebounds, and Fracture of Alkali-Halide Nanocrystals

Published online by Cambridge University Press:  28 February 2011

Rainer D. Beck
Affiliation:
Departments of Chemistry, University of California, Los Angeles, CA 90024-1569
Pamela St. John
Affiliation:
Departments of Chemistry, University of California, Los Angeles, CA 90024-1569
Margie L. Homer
Affiliation:
Departments of Chemistry, University of California, Los Angeles, CA 90024-1569
Robert L. Whetten
Affiliation:
Departments of Chemistry, University of California, Los Angeles, CA 90024-1569
Get access

Abstract:

Collision phenomena involving the smallest solid objects and inert solid surfaces have been explored by the method of mass-selective time-of-flight and angular measurements of the surface-collision dynamics of ionized cluster beams. At lowest energy, both transient physisorption (soft-landing) and intact scattering have been observed. Impact of nanocrystalline sodium-fluoride clusters (NanFn-1+) against graphite at intermediate energy (0.2 - 1 eV per atom) leads efficiently to fracture-like processes. At higher energy, a featureless evaporative cascade dominates the fragment distribution. Energy- and angle-resolved scattering of mass-selected clusters from oriented graphite is shown to be a versatile method for investigation of cluster structure-energetics, cluster-surface interactions, and sticking phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A., Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704736 (1989); and references within.Google Scholar
2. For molecular cluster experiments without mass-selection, see Holland, R. J., Xu, G. Q., Levkoff, J., Robertson, A. and Bernasek, S. L., J. Chem. Phys. 88, 7952 (1988);Google Scholar
Vostrikov, A. A., Dubov, D. Yu., and Predtechenskii, M. R., Sov. Phys. Tech. Phys. 33, 1153 (1989);Google Scholar
DeLange, P. J., Renkema, P. J., and Kommandeur, J., J. Phys. Chem. 92, 5749 (1988).Google Scholar
3. For impact of much higher-energy, mass-selected clusters, see Beuhler, R. J., Friedlander, G. and Friedman, L., Phys. Rev. Lett. 63, 1292 (1989); andGoogle Scholar
Science 245, 1448–9 (1989).Google Scholar
4. For a recent comprehensive review of molecule-surface hyperthermal collision processes and scattering, see Amirav, A., Comments At. Mol. Phys., invited review, in press.Google Scholar
5. Zheng, L.-S., Bnical, P. J., Pettiette, C. L., Yang, S., and Smalley, R. E., J. Chem. Phys. 83, 4273 (1985).Google Scholar
6. Martin, T. P., Phys. Rep. 95, 167 (1983).Google Scholar
7. Honea, E. C., Ph.D. Thesis, University of California, Los Angeles (1990).Google Scholar
8. Luo, J., Ph.D. Thesis, Georgia Institute of Technology (1988).Google Scholar
9. Honea, E. C., Homer, M. L., and Whetten, R. L., Int. J. Mass Spec. Ion Proc. 99, xxx (1990).Google Scholar
10. Conover, C. W. S., Yang, Y. A. and Bloomfield, L. A., Phys. Rev. B38, 3517 (1988).Google Scholar
11. Honea, E. C., Homer, M. L., Labastie, P. and Whetten, R. L., Phys. Rev. Lett. 63, 394 (1989).Google Scholar
12. Rajagopal, G., Barnett, R. N., Nitzan, A., Landman, U., Honea, E. C., Labastie, P., Homer, M. L. and Whetten, R. L., ibid. 64, 2933 (1990).Google Scholar
13. Campana, J. E., Barlak, T. M., Colton, R. J., DeCorpo, J. J., Wyatt, J. R., and Dunlap, B. I., Phys. Rev. Lett. 47, 1046 (1981).Google Scholar
14. Beck, R. D. et al., Rev. Sci. Instrum., to be submitted.Google Scholar
15. Example of the soft-landing method: Fayet, P., Granzer, F., Hegenbart, G., Moisar, E., Pischel, B. and Wöste, L., Phys. Rev. Lett. 55, 3002 (1985).Google Scholar
16. Kayser, R. F. and Hubbard, J. B., J. Chem. Phys. 77, 4704 (1982); for application to ion scattering angular distributionsGoogle Scholar
see Kato, M., Williams, R. S. and Aono, M., Nuci. Instrum. Meth. Phys. Res. B33, 462 (1988).Google Scholar
17. For review of the surface-induced dissociation method applied to polyatomic ions, see Cooks, R. G., Ast, T. and Mabud, Md. A., Int. J. Mass Sped. Ion Proc. 100, xxx (1990).Google Scholar
18. Hwang, H-J., Sensharma, D. K. and El-Sayed, M. A., Chem. Phys. Lett. 160, 243 (1989);Google Scholar
Phys. Rev. Lett. 64, 808 (1990).Google Scholar
19. Kenttamaa, H. I. and Cooks, R. G., Int. J. Mass Sped. Ion Proc. 64, 79 (1985). The higher fraction deduced here is not necessarily inconsistent with the 0.15 value obtained earlier (ref. 15) because our collision geometry is nearer to normal, yielding a larger fraction of incident momentum directed into the surface.Google Scholar
20. Ens, W., Beavis, R., and Standing, K. G., Phys. Rev. Lett. 50, 27 (1983).Google Scholar
21. Luo, J., Landman, U. and Jortner, J., in “Physics and Chemistry of Small Clusters,” eds. Jena, P., Rao, B. K. and Khanna, S. N. (Plenum, New York 1987) pp. 201206.Google Scholar