Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:20:23.173Z Has data issue: false hasContentIssue false

Reliable Local Strain Characterization on Si/SiGe Structures in Biaxial Tension

Published online by Cambridge University Press:  01 February 2011

Wenjun Zhao
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, 911 Parnters Way, RM 3074 EB1, RALEIGH, NC, 27606, United States
Gerd Duscher
Affiliation:
[email protected], North Carolina State University, MSE, 911 Parnters Way, RM 3074 EB1, RALEIGH, NC, 27606, United States
Mohammed A. Zikry
Affiliation:
[email protected], North Carolina State University, Mechanical and Aerospace Department, RALEIGH, NC, 27606, United States
George Rozgonyi
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, RALEIGH, NC, 27606, United States
Get access

Abstract

The strain in the strained Si layer on a blanket strained Si/SiGe structure could not be determined with only convergent beam electron diffraction to high order Laue zone (HOLZ) line splitting. Combined with CBED and finite element calculations, we quantified the deformation field from HOLZ line splitting and demonstrated a procedure to determine the initial strain in the strained Si layer. Our results also gave us insights in strain relaxation in a TEM sample. The CBED technique combined with FE modeling has the potential for initial strain measurements on new generation short channel CMOS technology nodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ikarashi, N. Toda, A., and Ono, H., J. Crystal Growth 210, 341 (2000).Google Scholar
2 Zuo, J. M. Kim, M., and Park, G., Appl. Phys. Lett. 84 (12), 2181 (2004).Google Scholar
3 Pantel, R. Clement, L., Kwakman, L. F. T., Rouviere, J. L., Appl. Phys. Lett. 85, 651 (2004).Google Scholar
4 Istratov, A. A. Zhang, P., Weber, E. R., Kisielowski, C., He, H., Nelson, C., and Spence, J. C. H., Appl. Phys. Lett. 89, 161907 (2006).Google Scholar
5 Kim, M. J. Huang, J., Tang, S., and Wise, R., Appl. Phys. Lett. 89, 063114 (2006).Google Scholar
6 Zikry, M. A. Ashmawi, W. M., Wang, K., and Reeber, R. R., J. Crystal Growth 266, 415 (2004).Google Scholar
7 Moaveni, S., Theory and APplication with Ansys. (Pearson/Prentice Hall, Upper Saddle River, NJ, 2003).Google Scholar
8 Pantel, R. Clement, L., Kwakman, L. F. T., and Rouviere, J. L., Appl. Phys. Lett. 85 (4), 651 (2004).Google Scholar
9 Anjum, D. Li, J., Hull, R., Xia, G., and Hoyt, J. L., Appl. Phys. Lett. 87, 222111 (2005).Google Scholar
10 Yeo, Y. C. and Sun, J., Appl. Phys. Lett. 86, 23103 (2005).Google Scholar
11 Harker, A. H. Jain, S. C., Atkinson, A., and Pinardi, K., J. Appl. Phys. 78, 1630 (1995).Google Scholar
12 Androussi, Y. Benabbas, T., and Lefebvre, A., J. Appl. Phys. 86, 1945 (1999).Google Scholar
13 Liu, G. R. and Quek, S. S., Semicond. Sci. Technol 17, 639 (2002).Google Scholar
14 Williams, D. B. and Carter, C. B., Transmission Electron Microscopy: a Textbook for Materials Science III. (Plenum Press, New York, 1996).Google Scholar