Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:25:04.570Z Has data issue: false hasContentIssue false

The Relationship between InGaAs Channel Layer Thickness and Device Performance in High Electron Mobility Transistors

Published online by Cambridge University Press:  22 February 2011

M. Meshkinpour
Affiliation:
University of California, Los Angeles, CA 90024
M. S. Goorsky
Affiliation:
University of California, Los Angeles, CA 90024
D. C. Streit
Affiliation:
TRW, Redondo Beach, CA 90278
T. Block
Affiliation:
TRW, Redondo Beach, CA 90278
M. Wojtowicz
Affiliation:
TRW, Redondo Beach, CA 90278
K. Rammohan
Affiliation:
University of Southern California, Los Angeles, CA 90089
D. H. Rich
Affiliation:
University of Southern California, Los Angeles, CA 90089
Get access

Abstract

The performance of InGaAs/GaAs pseudomorphic high electron mobility transistors is anticipated to improve with increased channel thickness due to reduced effects of quantum confinement. However, greater channel thicknesses increase the probability of forming misfit dislocations which have been reported to impair device properties. We characterized the composition and thickness of the active layer in Al0.25Ga0.75As / In0.21Ga0.79As structures with different channel thicknesses (75 Å - 300 Å) to within ± 0.005 and ± 8 Å using high resolution x-ray techniques. We determined, using Hall and rf measurements, that the device properties of these structures improved with increasing thickness up to about 185-205 Å; degraded properties were observed for thicker channel layers. Cathodoluminescence results indicate that the mosaic spread observed in x-ray triple axis rocking curves of these device structures is due to the presence of misfit dislocations. Thus, even though misfit dislocations are present, the device structure performs best with a channel thickness of ∼185 Å. These results demonstrate that one can fabricate functional devices in excess of critical thickness considerations, and that these x-ray techniques provide an effective means to evaluate structural properties prior to device processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Streit, D.C., Tan, K.L., Dia, R.M., Liu, J.K., Han, A.C. and Velebir, J.R., IEEE Elec. Dev. Lett. 12, 149 (1991).Google Scholar
2. Tan, K.L., Dia, R.M., Streit, D.C., Shaw, L.K., Han, A.C., Sholley, M.D., Liu, P.H., Trinh, T.Q., Lin, T., Yen, H.C., IEEE Elec. Dev. Lett. 12, 23 (1991).Google Scholar
3. Nguyen, L.D., Radulescu, D.C., Foisy, M.C., Tasker, P.J. and Eastman, L.F., IEEE Trans. Elec. Dev. 36, 833 (1989).Google Scholar
4. Fischer-Colbrie, A. Miller, J.N., Laderman, S.S., Rosner, S.J. and Hull, R., J. Vac. Sci. Technol., B 6 620 (1988).Google Scholar
5. Moll, N., Hueschen, M.R. and Fischer-Colbrie, A., IEEE Trans. Elec. Dev. 35, 878 (1988).Google Scholar
6. Matthews, J.W. and Blakeslee, A.E., J. Crys. Growth 27, 118 (1974).Google Scholar
7. Schweizer, T., Kohler, K., Rothemund, W. and Ganser, P., Appl. Phys. Lett. 59, 2736 (1991).Google Scholar
8. Bede Scientific Instruments Ltd, Lindsey Park, Bowburn, Durham DH6 5PF, U. K.Google Scholar
9.RADS Rocking Curve Analysis by Dynamical Simulation, Bede Scientific Instruments Ltd.. UK (1992).Google Scholar
10. Meshkinpour, M., Goorsky, M.S., Matney, K., Streit, D.C. and Block, T., J. Appl. Phys., submitted.Google Scholar
11. Green, G.S., Tanner, B.K., Barnett, S.J., Emery, M.T., Pitt, A.D., Whitehouse, C.R. and Clark, G.F., Philos. Mag. Lett. 62, 131 (1990).Google Scholar
12. Rich, D.H., Rammohan, K., Tang, Y., Lin, H.T., Maserjian, J., Grunthaner, F.J., Larsson, A. and Borenstain, S.I., Appl. Phys. Lett. 64, 1 (1994).Google Scholar
13. Fewster, P.F. and Curling, C.J., J. Appl. Phys. 62, 4154 (1987).Google Scholar
14. Wie, C.R., J. Appl. Phys. 66, 985 (1989).Google Scholar
15. Stiffler, S.R., Comfort, J.H., Stanis, C.L., Harame, D.L., Fresart, E. de and Meyerson, B.S., J. Appl. Phys. 70, 1416 (1991).Google Scholar
16. Streit, D.C. et al., to be submitted.Google Scholar
17. Tanner, B.K. and Bowen, D.K., J. Crys. Growth 126, 1 (1993).Google Scholar
18. Watson, G.P., Ast, D.G., Anderson, T.J., Pathangey, B. and Hayakawa, Y., J. Appl. Phys. 71, 3399 (1992).Google Scholar