Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:25:49.376Z Has data issue: false hasContentIssue false

Polyaniline: an Old Polymer with New Physics

Published online by Cambridge University Press:  25 February 2011

A. J. Epstein
Affiliation:
The Ohio State University, Department of Physics and Department of Chemistry, Columbus, OH 43210-1106
A. G. MacDiarmid
Affiliation:
University of Pennsylvania, Department of Chemistry, Philadelphia, PA 19104
Get access

Abstract

Polyanilines have been known for over one hundred years. Recent studies of this chemically flexible polymer have demonstrated unusual electronic phenomena in both the insulating forms and the conducting forms. Studies of both forms show that the origins of the electronic phenomena are substantially different than those observed in polyacetylene and related earlier studied conjugated carbon backbone polymers. Unusual aspects include the formation of massive polarons upon photoexcitation in the insulating forms. These polarons have unusual time dynamics associated with the roles of ring-flipping and ring-conformation in the polymer system. A new model for the effects of electron lattice coupling via ring rotation has been introduced. The “metallic” form of the polymer shows that the metallic state is associated with the ordered regions of the doped polymer. The roles of localization are important in leading to the formation of a textured, granular metal. At low temperatures for emeraldine salt, and at higher temperatures for derivatized polyanilines, localization is important. Potential new technologies based on the polyanilines, including optical information storage, controlled microwave absorption, and use of a self-protonating derivative that is soluble in aqueous media are noted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Proceedings of the International Conferences on Synthetic Metals, Santa Fe, NM, June 1988 [Synth. Met. 27 (1988); 28, 29 (1989)]; Kyoto, Japan, June, 1986 [Synth. Met. 17ߝ19 (1987)]; Albano Terme, Italy, June 1984 [Mol. Cryst. Liq. Cryst. 117ߝ121 (1985)].Google Scholar
2. See, for example, Skotheim, T. (ed.), Handbook of Conducting Polymers, Vols. 1 and 2, Dekker, New York (1986).Google Scholar
3. Boudreaux, D.S., Chance, R.R., Wolf, J.F., Shacklette, L.W., Brédas, J.L., Thémans, B., André, J.M., Silbey, R., J. Chem. Phys. 85, 4584 (1986).CrossRefGoogle Scholar
4. Stafstrom, S., Bredas, J.L., Epstein, A.J., Woo, H.S., Tanner, D.B., Huang, W.S., MacDiarmid, A.G., Phys. Rev. Lett. 59, 1464 (1987).Google Scholar
5. Ginder, J.M., Epstein, A.J., and MacDiarmid, A.G., Solid State Commun. 72, 987 (1989), and to be published.Google Scholar
6. dos Santos, M.C. and Bredas, J.L., Phys. Rev. Lett. 62, 2499 (1989);Google Scholar
see also dos Santos, M.C. and Bredas, J.L., Synth. Met. 29, E321 (1989).CrossRefGoogle Scholar
7. MacDiarmid, A.G. and Epstein, A.J., J. Chem. Soc, Faraday Trans., in press.Google Scholar
Epstein, A.J. and MacDiarmid, A.G., Proc. Winter School on Electronic Processible Polymers, Kirchberg, Austria (Kuzmany, H., Mehring, M. and Roth, S., Ed., Springer-Verlag, Berlin, 1989), p. 282.Google Scholar
8. Cromack, K.R., Jozefowicz, M.E., Ginder, J.M., McCall, R.P., Epstein, A.J., Scherr, E., MacDiarmid, A.G., Bull. Am. Phys. Soc. 34, 583 (1989), and to be published.Google Scholar
9. Tang, X., Scherr, E., MacDiarmid, A.G., Epstein, A.J., Bull. Am. Phys. Soc. 34, 583 (1989), and to be published;Google Scholar
Adreatta, A., Cao, Y., Chiang, J.C., Heeger, A.J., and Smith, P., Synth. Met. 26, 383 (1988).CrossRefGoogle Scholar
10. Jozefowicz, M.E., Laversanne, R., Javadi, H.H.S., Epstein, A.J., Pouget, J.P., Tang, X., MacDiarmid, A.G., Phys. Rev. B 39, 12,958 (1989).Google Scholar
11. Roe, M.G., Ginder, J.M., Wigen, P.E., Epstein, A.J., Angelopoulos, M., MacDiarmid, A.G., Phys. Rev. Lett. 60, 2789 (1988).Google Scholar
12. McCall, R.P., Ginder, J.M., Roe, M.G., Asturias, G.E., Scherr, E.M., MacDiarmid, A.G., Epstein, A.J., Phys. Rev. B 39, 10,174 (1989).Google Scholar
13. McCall, R.P., Roe, M.G., Ginder, J.M., Kusumoto, T., Epstein, A.J., Asturias, G.E., Scherr, E.M., MacDiarmid, A.G., Synth. Met. 29, E433 (1989).Google Scholar
14. Kim, Y.H., Phillips, S.D., Nowak, M.J., Spiegel, D., Foster, C.M., Yu, G., Chiang, J.C., Heeger, A.J., Synth. Met. 29, E291 (1989);CrossRefGoogle Scholar
Phillips, S.D., Yu, G., Cao, Y., and Heeger, A.J., Phys. Rev. B 39,10,702 (1989).CrossRefGoogle Scholar
15. McCall, R.P., Ginder, J.M., Ye, H.J., Leng, J.M., Manohar, S.K., Masters, J.G., Asturias, G.E., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B (1990), in press.Google Scholar
16. Roe, M.G., Ginder, J.M., Gustafson, T.L., Angelopoulos, M., MacDiarmid, A.G., Epstein, A.J., Phys. Rev. B 40 (15 Aug. 1989).Google Scholar
17. Roe, M.G., Ginder, J.M., McCall, R.P., Cromack, K.R., Epstein, A.J., Gustafson, T.L., Angelopoulos, M., MacDiarmid, A.G., Synth. Met. 29, E425 (1989).Google Scholar
18. Zuo, F., McCall, R.P., Ginder, J.M., Roe, M.G., Leng, J.M., Epstein, A.J., Asturias, G.E., Ermer, S.P., Ray, A. and MacDiarmid, A.G., Synth. Met. 39, E445 (1989).CrossRefGoogle Scholar
19. Epstein, A.J., Ginder, J.M., Zuo, F., Bigelow, R.W., Woo, H.S., Tanner, D.B., Richter, A.F., Huang, W.S., and MacDiarmid, A.G., Synth. Met. 18, 303 (1987).Google Scholar
20. Duke, C.B., Conwell, E.M., and Paton, A., Chem. Phys. Lett. 131, 82 (1986).Google Scholar
21. McCall, R.P., Ginder, J.M., and Epstein, A.J., to be published.Google Scholar
22. Zuo, F., Angelopoulos, M., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 39, 3570 (1989).Google Scholar
23. Kaplan, S., Conwell, E.M., Richter, A.F., and MacDiarmid, A.G., Macromolecules 22, 1669 (1989); Synth. Met. 29 E235 (1989); Polymer Preprints 29, 58 (1988).CrossRefGoogle Scholar
24. Zuo, F., Angelopoulos, M., MacDiarmid, A.G., Epstein, A.J., Phys. Rev. B 36, 3475 (1987).Google Scholar
25. Javadi, H.H.S., Cromack, K.R., MacDiarmid, A.G., and Epstein, A.J., Phys. Rev. B 39, 3579 (1989);CrossRefGoogle Scholar
Javadi, H.H.S., Microwave Journal, 162 (Feb., 1989).Google Scholar
26. Ginder, J.M., Richter, A.F., MacDiarmid, A.G. and Epstein, A.J., Solid State Commun. 67, 97 (1987).Google Scholar
27. Javadi, H.H.S., Laversanne, R., Epstein, A.J., Kohli, R.K., Scherr, E.M., and MacDiarmid, A.G., Synth. Met. 29, E439 (1989).CrossRefGoogle Scholar
28. Jozefowicz, M., et al., to be published.Google Scholar
29. Wang, Z., Javadi, H.H.S., Ray, A., MacDiarmid, A.G., and Epstein, A.J., submitted.Google Scholar
30. Yue, J., Epstein, A.J. and MacDiarmid, A.G., submitted.Google Scholar