Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:33:59.020Z Has data issue: false hasContentIssue false

A Model for the Study of Molecules Radiochemical Decomposition by Actinides Materials

Published online by Cambridge University Press:  01 February 2011

Lilian Berlu
Affiliation:
[email protected], CEA - Centre de Valduc, DRMN, CEA - Centre de Valduc, Is sur Tille, 21120, France
Gaëlle Rosa
Affiliation:
[email protected], CEA - Centre de VAlduc, Is sur Tille, 21120, France
Get access

Abstract

The radiochemical decomposition of molecules in storage environment which could lead to the corrosion of container or the formation of dangerous gas mixtures is a critical problem for radioactive materials. The complexity of the chemical system makes numerical models suitable for the reproduction mechanisms and the prediction of phenomena. In this study, a mathematical model for the dose rate distribution in external medium surrounding an α emitter actinide material has been proposed. The model has been implemented in a Monte Carlo scheme. An evaluation of the dose rate in the surrounding medium as a function of the sample size was shown and a discussion of the expected reactivity was made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] LaVerne, J.A., J. Phys. Chem. B Letters 109 (2005) 53955397 Google Scholar
[2] LaVerne, J.A., Tandon, L., J. Phys. Chem. B 107 (2003) 1362313628 Google Scholar
[3] LaVerne, J.A., Tandon, L., J. Phys. Chem. B 106 (2002) 380386 Google Scholar
[4] Vladimirova, M. V., Kulikov, I.A., Radiochemistry 44 1 (2002) 8690 Google Scholar
[5] Paraschivescu, A., Anita, V., Radiation Phys. and Chem. 62 (2001) 333336 Google Scholar
[6] Bonin, B., Colin, M., Dutfoy, A., J. Nuc. Mat. 281 (2000) 114 10.1016/S0022-3115(00)00184-7Google Scholar
[7] Lloyd, J.A., Eller, G., Literature search on hydrogen/oxygen recombination and generation in plutonium storage environments, LA-UR-98-4557, LANL (1998)Google Scholar
[8] Loida, A., Metz, V., Kienzler, B., Geckeis, H., J. Nuc. Mat. 346 (2005) 2431 Google Scholar
[9] Lapuerta, S., Etude de la corrosion du fer à l'interface de différents milieux (eau, air) soumis à l'irradiation de protons, Ph.D., thesis, Université Claude Bernard Lyon-I (2005)Google Scholar
[10] Petrik, N.G., Alexandrov, A.B., Vall, A.I., J. Phys. Chem. B 105 (2001) 59355944 Google Scholar
[11] Jun, J., Kim, J.C., Shin, J.H., Lee, K. wan, Baek, Y.S., Rad.Phys.Chem. 71 (2004) 10951101 Google Scholar
[12] Rtoh, O., Nilsson, S., Jonsson, M., J. Nuc. Mat. 354 (2006) 131136 Google Scholar
[13] Watanabe, D., Yoshida, T., Allen, C., Tanabe, T., J. Rad. and Nuc. Chem. 272 (2007) 461465 Google Scholar
[14] Grodkowski, J., Neta, P., J. Phys. Chem. B 105 (2001) 49674972 Google Scholar
[15] Kima, J.C., Getoff, N., Jun, J., Radiation Phys. and Chem. 75 (2006) 243246 Google Scholar
[16] Lind, S. C., Radiation Chemistry, Reinhold publishing corporation, New York, 1961 Google Scholar
[17] Ziegler, J. F., J. Appl. Phys / Rev. Appl. Phys. 85 (1999) 12491272 Google Scholar