Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:36:50.876Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties Of Laser-Processed Ni-Al-Mo Base Alloys

Published online by Cambridge University Press:  15 February 2011

David B. Snow*
Affiliation:
United Technologies Research Center, East Hartford, Connecticut 06108
Get access

Abstract

The addition of molybdenum to nickel base superalloys which contain a γ′ volume fraction of ≦ 0.35 allows them to be consolidated from powder by laser processing at solidification rates of ∼1040C/s. The as-solidified microstructure of these alloys is dendritic, and consists of a fine dispersion ∼20nm cuboidal γ′ in a supersaturated FCC γ matrix. When annealed at 500–700°C, additional age hardening occurs via the precipitation of ≤l0nm, Dla-structure Ni4Mo, DO22 - structure Ni3Mo and/or Pt2 Mo-structure Ni2Mo. This combined strengthening by very fine γ′ and NixMo dispersions in laser-processed material makes alloys of this type attractive for potential turbine disk applications. However, the 6–15 at % molybdenum required to prevent cracking during laser consolidation renders many of these alloys prone to a previously unreported, embrittling cellular phase transformation, γ + γ′ + NixMo→ γ′ + orthorhombic Ni3Mo, at temperatures of ≦900°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Breinan, E. M., Brown, C. O. and Snow, D. B., Final Report No. R81–914346–8, Contract N00014–73–C–0387, UTRC, East Hartford, CT 06108, January, 1981.Google Scholar
2.Snow, D. B., Breinan, E. M. and Kear, B. H., Superalloys 1980, Tien, J. K., Wlodek, S. T., Morrow III, H., Gell, M. and Maurer, G. E., eds., American Society for Metals, Metals Park, Ohio, 1980, p. 189.Google Scholar
3.Lipscombe, K., Steen, W. M. and West, D. R. F., Rapid Solidification Processing, Principles and Technologies, II, Mehrabian, R., Kear, B. H. and Cohen, M., eds., Claitor's Publishing Div., Baton Rouge, 1980, p. 189.Google Scholar
4.Esquivel, O., Mazumder, J., Bass, I. and Copley, S., ibid, p. 130.Google Scholar
5.Wood, J. V., Mills, P. F., Bingham, J. K. and Bee, J. V., Met. Trans. A., 10A 575–84 (1979).Google Scholar
6.Pearson, D. D., Proc. Conf. In-Situ Composites-III, J. L. Walter, It. F. X. Gigliotti, B. F. Oliver and H. Bibring, eds., Ginn Custom Publishing, Lexington, MA, 1979, p. 389.Google Scholar
7.Aigeltinger, E. H., Bates, S. R., Gould, R. W., Hren, J. J. and Rhines, F. N., Rapid Solidification Processing, Principles and Technologies, Mehrabian, R., Kear, B. H. and Cohen, M., eds., Claitor's Publishing Div., Baton Rouge, 1978, p. 291.Google Scholar
8.Breinan, E. M., Snow, D. B., Brown, C. O. and Kear, B. H., Rapid Solidification Processing, Principles and Technologies, II, Mehrabian, R., Kear, B. H. and Cohen, M., eds., Claitor's Publishing Div., Baton Rouge, 1980, p. 440.Google Scholar
9.Loomis, W. T., Freeman, J. W. and Sponseller, D. L., Met. Trans. A, 3 9891000 (1972).Google Scholar
10.Mehrabian, R., Rapid Solidification Processing, Principles and Technologies, Mehrabian, R., Kear, B. H. and Cohen, M., eds., Claitora's Publishing Div., Baton Rouge, 1978, p. 9.Google Scholar
11.Holiday, P. R., Cox, A. R. and Patterson II, R. J., ibid., p. 246.Google Scholar
12.Snow, D. B., Proc. 38th Annual Mtg., EMSA, G. U. Bailey, ed., Claitor's Publishing Div., Baton Rouge, 1980, p. 334Google Scholar