Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:27:08.367Z Has data issue: false hasContentIssue false

Microcrystalline Germanium Photodetectors

Published online by Cambridge University Press:  17 March 2011

M. Krause
Affiliation:
Forschungszentrum Jülich GmbH, IPV, 52425 Jülich, Germany
H. Stiebig
Affiliation:
Forschungszentrum Jülich GmbH, IPV, 52425 Jülich, Germany
R. Carius
Affiliation:
Forschungszentrum Jülich GmbH, IPV, 52425 Jülich, Germany
H. Wagner
Affiliation:
Forschungszentrum Jülich GmbH, IPV, 52425 Jülich, Germany
Get access

Abstract

For sensor applications in the detection of near infrared light we have prepared μc-Ge:H by plasma enhanced chemical vapor deposition (PECVD) with a mixture of germane and hydrogen, investigatedits structural and electronic properties and incorporated it into thin pin diodes. In order to ensure microcrystalline growth we had to use high hydrogen dilution. However, only the material prepared with a ratio of germane to hydrogen of 0.2% shows high crystallinity. The optical absorption is remarkably different from c-Ge and exhibits no indication of a direct gap at 0.8eV. When this material is implemented as part of a 110nm thin absorber, a short circuit current of 20mA/cm2 and a quantum efficiency of 15% at a wavelength of 1.1μm are achieved. Higher germane concentrations in hydrogen lead to poor electronic properties due to an increase of the amorphous phase and the short circuit current of the devices deteriorates. As for crystalline germanium photodiodes cooling of the devices is used to overcome the restrictionoriginating from the high free carrier concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vetterl, O., Hapke, P., Kluth, O., Lambertz, A., Wieder, S., Rech, B., Finger, F., Wagner, H., Solid State Phenomena 67–68, 101 (1999).10.4028/www.scientific.net/SSP.67-68.101Google Scholar
2. Ganguly, G., Ikeda, T., Nishimiya, T., Saitoh, K., Kondo, M., Matsuda, A., Appl. Phys. Lett. 69, 4224 (1996)Google Scholar
3. Carius, R., Fölsch, J., Lundszien, D., Houben, L., Finger, F., Mat. Res. Soc. Symp. Proc. Vol.507, 813 (1998).10.1557/PROC-507-813Google Scholar
4. Cho, S.M., Wolfe, D., He, S.S., Christensen, K., Maher, D.M., Lucovsky, G., Mat. Res. Soc. Symp. Proc. Vol. 358, 781 ((1995).Google Scholar
5. Krause, M., Carius, R., Stiebig, H., Finger, F., Lundszien, D., Wagner, H., Mat. Res. Soc. Symp. Proc. Vol. 557, 591 ((1999).Google Scholar
6. Krause, M., Carius, R., Stiebig, H., Wagner, H., Mat. Res. Soc. Symp. Proc. (2000) in printGoogle Scholar
7. Cerdeira, F., Cardona, M., Phys. Rev. B 5, 1440 ((1972)Google Scholar
8. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., Wagner, H., Phil. Mag. A 77, 1447 (1998)Google Scholar
9. , Landolt-Börnstein, III-17/1.3, Fig.4 and Fig.14Google Scholar
10. Brammer, T., Stiebig, H., Lambertz, A., Reetz, W., H. Wagner, Mat. Res. Soc. Symp. Proc. (2000) in printGoogle Scholar