Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:02:21.024Z Has data issue: false hasContentIssue false

Local and Long-Range Hydrogen Motion in a-Si:H

Published online by Cambridge University Press:  15 February 2011

P. Hari
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
P. C. Taylor
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
R. A. Street
Affiliation:
Department of Physics, University of Utah, Salt Lake City, UT 84112
Get access

Abstract

Nuclear magnetic resonance (NMR) measurements of 1H dipolar echoes in a-Si:H indicate that the dipolar spin-lattice relaxation time, T1D, can be used as a measure of local hydrogen motion. In general, the microscopic hydrogen motion is orders of magnitude faster, and the microscopic activation energies are much smaller, than those measured macroscopically using secondary ion mass spectroscopy (SIMS). Although no detailed model exists to explain these apparently divergent results, these discrepancies can be understood phenomenologically by assuming a very broad distribution of rates. In this case the measured activation energies can be shown to scale roughly as the logarithm of the time over which the measurement is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hari, P., Taylor, P. C., and Street, R. A., Mat. Res. Soc. Symp. Proc. 258, 293 (1992).Google Scholar
2. Hari, P., Taylor, P. C., and Street, R. A., Mat. Res. Soc. Symp. Proc. 297, 297 (1993).Google Scholar
3. Hari, P., Taylor, P. C., and Street, R. A., J. Non-Cryst. Solids 164–165, 313 (1993).Google Scholar
4. Hari, P., Taylor, P. C., and Street, R. A., Mat. Res. Symp. Proc. 392, 326 (1994).Google Scholar
5. Street, R. A., Kakalios, J., Tsai, C.C. and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
6. McMahon, T. J., Mat. Res. Symp. Proc. 219, 57 (1991).Google Scholar
7. Gibbs, M. R. J., Evetts, J. E., and Leake, J. A., J. Mat. Science 18, 278 (1983).Google Scholar
8. Zallen, R., The Physics of Amorphous Solids (John Wiley, New York, 1983).Google Scholar
9. Stradins, P. and Fritzsche, H., Philos. Mag. B 69, (1994).Google Scholar
10. Zhang, Q., Takashima, H., Zhou, J., Kumeda, M. and Shimizu, T., Mat. Res. Soc. Symp. 336, 269 (1994).Google Scholar
11. Norberg, R. E., Bodart, J., Corey, R., Fedders, P. A., Paul, W., Turner, W. A., Pang, D. and Wetsel, A., MRS Symp. Proc. 258, 377 (1992).Google Scholar
12. Zhao, Y., Zhang, D., Kong, G., Pan, G. and Liao, X., Phys. Rev. Lett. (1995), in press.Google Scholar
13. Lust, L. M. and Kakalios, J., unpublished.Google Scholar
14. Masson, D. P., Ouhlal, A. and Yelon, A., unpublished.Google Scholar