Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:32:11.435Z Has data issue: false hasContentIssue false

I-V CHARACTERISTICS OF a-Si:H p-i-n Diodes with Uniform and Non-Uniform Defect Distributions

Published online by Cambridge University Press:  17 March 2011

M.A. Kroon
Affiliation:
Delft University of Technology, Lab. of Electronic Components, Technology and Materials – DIMES, P.O. Box 5053, 2600 GB DELFT, the, Netherlands
R.A.C.M.M. van Swaaij
Affiliation:
Delft University of Technology, Lab. of Electronic Components, Technology and Materials – DIMES, P.O. Box 5053, 2600 GB DELFT, the, Netherlands
J.W. Metselaar
Affiliation:
Delft University of Technology, Lab. of Electronic Components, Technology and Materials – DIMES, P.O. Box 5053, 2600 GB DELFT, the, Netherlands
Get access

Abstract

This paper compares a-Si:H p-i-n diodes having a spatially uniform distribution of defect states with diodes in which the defect distribution is non-uniform, i.e. equilibrated according to the Defect-Pool model. Diodes with a uniform defect distribution exhibit a clear dependence of the current-voltage characteristics on the width of the intrinsic region, whereas in equilibrated diodes, this dependence is absent. This difference is explained by comparing the space-charge distribution and the recombination profile of the intrinsic region in both types of diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, I. and Lee, S., J. Appl. Phys. 53, 1045 (1982).Google Scholar
2. Matsuura, H., Matsuda, A., Okushi, H., and Tanaka, K., J. Appl. Phys. 58, 1578 (1985).Google Scholar
3. Berkel, C. van, Powell, M.J., Franklin, A.R., and French, I.D., J.Appl. Phys. 73, 5264 (1994).Google Scholar
4. Hack, M. and Shur, M., J. Appl. Phys. 54, 5858 (1983).Google Scholar
5. Powell, M.J. and Deane, S.C., Phys. Rev. B. 53, 10121 (1996).Google Scholar
6. Lemmi, F., J. Non-Cryst Solids. 266–269, 1198 (2000).Google Scholar
7. Stutzmann, M., Phil. Mag. B. 60, 531 (1989).Google Scholar
8. Bar-Yam, Y., Adler, D., and Joannopoulos, J.D., Phys. Rev. Lett. 57, 467 (1986).Google Scholar
9. Branz, H.M. and Crandall, R.S., Solar Cells 29, 159 (1989).Google Scholar
10. Zeman, M., Tao, G., Trijssenaar, M., Willemen, J.A., Metselaar, J.W., and Schropp, R.E.I., Mat. Res. Soc. Symp. Proc. 377, 639 (1995).Google Scholar
11. Simmons, J.G. and Taylor, G.W., Phys. Rev. B. 4, 502 (1971).Google Scholar
12.For simplicity it is assumed that the quasi Fermi-levels for free charge carriers are equal to those for trapped charge; Simmons et al. used quasi-Fermi levels for trapped charge [11].Google Scholar
13. Shockley, W. and Read, W.T. Jr, Phys. Rev. B. 87, 835 (1952); R.N. Hall, Phys. Rev. B. 87, 387 (1952).Google Scholar
14. Kroon, M.A., Swaaij, R.A.C.M.M. van, Zeman, M., Kuznetsov, V.I., and Metselaar, J.W., Appl. Phys. Lett. 72, 209 (1998).Google Scholar
15. Biersack, J.P. and Haggmark, L., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar