Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T10:50:29.705Z Has data issue: false hasContentIssue false

Influence of SiGe Thickness on the Co/SiGe/Si Solid State Reaction

Published online by Cambridge University Press:  10 February 2011

R. A. Donaton
Affiliation:
INSYS, K. U. Leuven, B-3001 Leuven, Belgium
S. Jin
Affiliation:
INSYS, K. U. Leuven, B-3001 Leuven, Belgium
H. Bender
Affiliation:
INSYS, K. U. Leuven, B-3001 Leuven, Belgium
K. Maex
Affiliation:
INSYS, K. U. Leuven, B-3001 Leuven, Belgium INSYS, K.U. Leuven, B-3001 Leuven, Belgium
A. Vantomme
Affiliation:
Instituut voor Kern- en Stralingsfysika, K.U. Leuven, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, K.U. Leuven, B-3001 Leuven, Belgium
Get access

Abstract

The effect of the thickness of the SiGe layers in the Co-SiGe/Si reaction is investigated. Formation of the disilicide phase is retarded when compared to the reaction of Co with pure Si substrates. This delay is dependent on the thickness of the SiGe layer, which determines the effective Ge concentration at the reaction front, changing the energetics of the reaction. Besides, Ge expelled from the Co(Si1-yGey) compound blocks the Co diffusion paths, slowing down the reaction. The thermal stability of the silicide layer is also affected by the Ge segregation, with the film agglomerating at lower temperatures when formed on thicker SiGe layers. The slow supply of Co atoms to the reaction front, due to the blocking of Co diffusion paths by the segregated Ge, is believed to be the reason for the presence of the preferential (h00) orientation of the disilicide phase observed in our samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Verdonckt-Vandenbroek, S., Crabbé, E. F., Meyerson, B. S., Harame, D. L., Restle, P. J., Stork, J. M. C., and Johnson, J. B., IEEE Trans. on Electron Devices 41, 90 (1994).10.1109/16.259625Google Scholar
[2] König, U. and Hersener, J., Solid State Phenomena 47–48, 17 (1996).Google Scholar
[3] Xiao, X., Sturm, J. C., Parihar, S. R., Lyon, S. A., Meyerhofer, D., Palfrey, S., and Shallcross, F. V., IEEE Electron Device Letters 14, 199 (1993).10.1109/55.215151Google Scholar
[4] Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., and Özturk, M.C., J. Mater. Res. 10 2849 (1995).10.1557/JMR.1995.2849Google Scholar
[5] Qi, W.-J., Li, B.-Z., Huang, W.-N., Gu, Z.-G., Lu, H.-Q., Zhang, X.-J., Zhang, M., Dong, G.-S., Miller, D.C., and Aitken, R.G., J. Appl. Phys. 77, 1086 (1995).10.1063/1.358969Google Scholar
[6] M. Glück, A. Schüppen, Rosier, M., Heinrich, W., Hersener, J., König, U., Yam, O., Cytermann, C., and Eizenberg, M., Thin Solid Films 270, 549 (1995).Google Scholar
[7] Wang, Z., Chen, Y. L., Ying, H., Nemanich, R. J., and Sayers, D. E., Mat. Res. Soc. Symp. Proc. 320, 397 (1994).10.1557/PROC-320-397Google Scholar
[8] Goeller, P.T., Boyanov, B.I., Sayers, D.E., and Nemanich, R.J., Nuc. Inst. and Meth. Phys. Res. B 133, 84 (1997).10.1016/S0168-583X(97)00458-8Google Scholar
[9] Boyanov, B.I., Goeller, P.T., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 84, 4285 (1998).10.1063/1.368872Google Scholar
[10] Maex, K., Mat. Sci. and Eng. R11 (no. 2–3), (1993).Google Scholar
[11] Dass, M.L.A., Fraser, D.B., and Wei, C.-S., Appl. Phys. Lett. 58, 1308 (1991).10.1063/1.104345Google Scholar
[12] Tung, R.T., Appl. Phys. Lett. 68, 3461 (1996).10.1063/1.115793Google Scholar
[13] Vantomme, A., Degroote, S., Dekoster, J., and Langouche, G., Appl. Surf. Sci. 91, 24 (1995).10.1016/0169-4332(95)00089-5Google Scholar
[14] Donaton, R.A., Maex, K., Vantomme, A., Langouche, G., Morciaux, Y., A. St.Amour, and Sturm, J., Appl. Phys. Lett. 70 1266 (1997).10.1063/1.118548Google Scholar