Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:02:26.492Z Has data issue: false hasContentIssue false

Influence of OVPD parameters on the performance of organic solar cells utilizing pentacene/PTCDI absorption layers

Published online by Cambridge University Press:  18 April 2012

S. Axmann*
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Brast
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
N. Wilck
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
H. Windgassen
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Heuken
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath, Germany
H. Kalisch
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
A. Vescan
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
Get access

Abstract

As global energy demand is steadily growing, renewable energy generation by solar cells is becoming increasingly important. The use of mono- and polycrystalline silicon solar cells, which nowadays dominate the market, is limited by wafer size, rigidness of substrates and the requirement of large energy amounts for manufacturing. Organic solar cells (OSC) have the potential to overcome these limitations; especially organic vapor phase deposition (OVPD) technology offers the possibility of reproducible, large-scale production at low temperatures and on flexible substrates.

We report on planar heterojunction OSC utilizing an active layer of pentacene/N, N’- ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide (PTCDI) fabricated by an Aixtron Gen-1 OVPD tool. The influence of substrate temperature was studied using atomic force microscopy (AFM) on single layers and bilayers. In addition electrical characterization with and without illumination of fully processed solar cells which utilize different cathode layers was carried out.

AFM images indicate that crystallization of pentacene layers can be widely influenced by substrate temperature, a PTCDI-C13H27 layer atop of these covers the crystallites. Open-circuit voltage was found to be 0.47 V and short-circuit current densities beyond 0.8 mA/cm2 were measured under a spectrum close to AM 1.5 with 100 mW/cm2. Fill factors were determined to be as high as 44 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovolt: Res. Appl. 19, 565572 (2011).Google Scholar
[2] Solarbuzz, , “Module Pricing”, Available at http://www.solarbuzz.com/facts-and-figures/retailprice-environment/module-prices, Accessed on 11.11.2011.Google Scholar
[3] Lin, C.-S. and Lin, Y.-J., J. Non-Cryst. Solids 356, 28202823 (2010).Google Scholar
[4] Jurchescu, O. D., Baas, J. and Palstra, T. T. M., Appl. Phys. Lett. 84, 30613063 (2004).Google Scholar
[5] Pandey, A. K., Dabos-Seignon, S. and Nunzi, ,; Appl. Phys. Lett. 89, 113506 (2006).Google Scholar
[6] Monestier, F., Pandey, A. K., Simon, J.-J., Torchio, P., Escoubas, L. and Nunzi, J.-M., J. Appl. Phys. 102, 034512 (2007).Google Scholar
[7] Narayanan Unni, K.N., Pandey, A. K., Alem, S. and Nunzi, J.-M., Chem. Phys. Lett. 421(4 -6), 554557 (2006).Google Scholar
[8] Himcinschi, C., Meyer, N., Hartmann, S., Gersdorff, M., Friedrich, M., Johannes, H.-H., Kowalsky, W., Schwambera, M., Strauch, G. und Heuken, M. et al. ., Appl. Phys. A 80, 551555 (2005).Google Scholar
[9] Shrotriya, V., Li, G., Yao, Y., Moriarty, T., Emery, K. and Yang, Y., Adv. Funct. Mater. 16, 20162023 (2006).Google Scholar
[10] Schafferhans, J., Baumann, A., Wagenpfahl, A., Deibel, C., Dyakonov, V., Org. Electron. 11 (10), 1693-1700 (2010).Google Scholar
[11] Tress, W., Petrich, A., Hummert, M., Hein, M., Leo, K. and Riede, M., Appl. Phys. Lett. 98, 063301–1–063301-3 (2011).Google Scholar
[12] Vasseur, K., Rolin, C., Vandezande, S., Temst, K., Froyen, L. and Heremans, P., J. Phys. Chem. C 114 (6), 27302737 (2010).Google Scholar
[13] Hung, L. S., Tang, C. W., and Mason, M. G., Appl. Phys. Lett. 70, 152 (1997).Google Scholar
[14] Choong, V.-E., Shi, S., Curless, J., and So, F., Appl. Phys. Lett. 76, 958 (2000).Google Scholar