Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:27:03.710Z Has data issue: false hasContentIssue false

Growth of non-polar a-plane and cubic InN on r-plane sapphire by molecular beam epitaxy

Published online by Cambridge University Press:  01 February 2011

Hai Lu
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
William J. Schaff
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
Lester F. Eastman
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853
Volker Cimalla
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, PF100565, 98693 Ilmenau, Germany
Joerg Pezoldt
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, PF100565, 98693 Ilmenau, Germany
Oliver Ambacher
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, PF100565, 98693 Ilmenau, Germany
J. Wu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Wladek Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

Growth of non-polar III-nitrides has been an important subject recently due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. Despite study of non-polar GaN and GaN-based heterostructures, there are few reports on epitaxial growth of non-polar InN, which is also an important component of the III-nitride system. In this study, we report heteroepitaxial growth of non-polar InN on r-plane sapphire substrates using plasma-assisted molecular beam epitaxy. It is found that when a GaN buffer is used, the following InN film appears to be non-polar (1120) a-plane which follows the a-plane GaN buffer. The room temperature Hall mobility of undoped a-plane InN is around 250 cm2/Vs with a carrier concentration around 6×1018 cm-3. Meanwhile, if InN film is directly deposited on r-plane sapphire without any buffer, the InN layer is found to consist of a predominant zincblende (cubic) structure along with a fraction of the wurtzite (hexagonal) phase with increasing content with proceeding growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, W. J., Eastman, L. F., Journal of Physics: Condensed Matter, 14, 3399, (2002).Google Scholar
2. Deguchi, T., Sekiguchi, K., Nakamura, A., Sota, T., Matsuo, R., Chichibu, S., and Nakamura, S., Jpn. J. Appl. Phys., 38 Part 2, L914 (1999).Google Scholar
3. Waltereit, Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K. H., Nature (London) 406, 865 (2000).Google Scholar
4. Kuznia, J. N., Yang, J. W., Chen, Q. C., Krishnankutty, S., Asif Khan, M., George, T., and Freitas, J. Jr, Appl. Phys. Lett. 65, 2407 (1994).Google Scholar
5. Ng, H. M., Appl. Phys. Lett. 80, 4369 (2002).Google Scholar
6. Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W. III, Li, S. X., Haller, E. E., Lu, Hai, and Schaff, William J., J. Appl. Phys. 94, 4457 (2003).Google Scholar
7. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, W., Pharkya, A., and Eastman, L. F., Appl. Phys. Lett. 77, 2548 (2000).Google Scholar
8. Lu, H., Schaff, W. J., Eastman, L. F., Wu, J., Walukiewicz, W., Look, D. C., Molnar, R. J., MRS Fall Meeting (December 2–6, 2002, Boston, MA), Mater. Res. Soc. Symp. Proc. L4.10.Google Scholar
9. Swartz, C. H., Tomkins, R. P., Myers, T. H., Lu, Hai, Schaff, W. J., Eastman, L. F., 2003 Electronic Materials Conference (June 25–27, 2003, Salt Lake City, Utah), G 9.Google Scholar
10. Lu, C. J., Bendersky, L. A., Lu, Hai, Schaff, William J., Appl. Phys. Lett. 83, 2817 (2003).Google Scholar
11. Strite, S., Chandrasekhar, D., Smith, D. J., Sariel, J., Chen, H., Teraguchi, N., Morkoc, H., J. Cryst. Growth 127, 204 (1993).Google Scholar
12. Cimalla, V., Pezoldt, J., Ambacher, O., Spieβ, L., Teichert, G., Lu, H., Schaff, W. J., Appl. Phys. Lett. 83, 3468 (2003).Google Scholar