Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:10:26.506Z Has data issue: false hasContentIssue false

Growth of Epitaxial CoSi2 Through a Thin Interlayer

Published online by Cambridge University Press:  15 February 2011

R. T. Tung*
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill, N.J. 07974
Get access

Abstract

The phenomenon of Ti-interlayer mediated epitaxy (TIME) of CoSi2 on Si(100) has attracted much academic and technological interest. As yet, the role of the interlayer, Ti, is not fully understood. The various drawbacks of the TIME process have driven the search for a better interlayer. New results are presented which demonstrate the efficacy of a thin SiOx layer, grown in a peroxide-containing aqueous solution, in inducing nearly perfect epitaxial growth of CoSi2 on practically all surfaces of Si. This technique, dubbed oxide mediated epitaxy (OME), allows a thin layer of epitaxial CoSi2 to grow sub-surface, leaving the SiOx layer largely on the surface of the silicide. An interesting result of the surface oxide cap is a significant re-evaporation of cobalt observed during deposition at elevated temperatures. Thicker (10-30nm), excellent quality, CoSi2 single crystal thin films have been grown by repeated growth sequences on Si(100), (110), (211) and (511). Nearly perfect type A oriented CoSi2 layers were grown on Si(111) using mixed A/B oriented template layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maex, K., Mater. Sci. Eng. Rep. R11, 53 (1993).Google Scholar
2. Liu, R., Williams, D. S., and Lynch, W. T., J. Appl. Phys. 63, 1990 (1988).Google Scholar
3. Tung, R, T., Mater. Chem. Phys. 32, 107 (1993).Google Scholar
4. Mantl, S. and Bay, H. L., Appl. Phys. Lett. 61, 267 (1992).Google Scholar
5. Yalisove, S. M., Tung, R. T., and Loretto, D., J. Vac. Sci. Technol. A 7, 599 (1989).Google Scholar
6. Jimenez, J. R., Hsiung, L. M., Thompson, R. D., Hashimoto, S., Ramanathan, K. V., Arndt, R., Rajan, K., Iyer, S. S., and Schowalter, L. J., Mater. Res. Soc. Symp. Proc. 60, 237 (1990).Google Scholar
7. White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
8. Tung, R. T., Gibson, J. M., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 43, 476(1983).Google Scholar
9. Dass, M. L. A., Fraser, D. B. and Wei, C. -S., Appl. Phys. Lett. 58, 1308 (1991).Google Scholar
10. Tung, R. T. and Schrey, F., MRS Symp. Proc. 402, 173 (1996).Google Scholar
11. Hsia, S. L., Tan, T. Y., Smith, P., and McGuire, G. E., J. Appl. Phys. 70, 1864 (1992).Google Scholar
12. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 67, 2164 (1995).Google Scholar
13. Byun, J. S., Seon, J. M., Park, J. W., Hwang, H., and Kim, J. J., MRS Syrmp. Proc. 402, 167 (1996).Google Scholar
14. Ogawa, S., Fair, J. A., Dass, M. L. A., Jones, E. C., Kouzaki, T., Cheung, N. W., and Fraser, D. B., Ext. Abs. SSDM' 93, p. 195 (1993).Google Scholar
15. Liu, P., Li, B. -Z., Sun, Z., Gu, Z. -G., Huang, W. -N., Zhou, Z. -Y., Ni, R. -S., Lin, C. -L., Zou, S. -C., Hong, F., and Rozgonyi, G. A., J. Appl. Phys. 74, 1700 (1993).Google Scholar
16. Hong, F., Rozgonyi, G. A., Patnaik, B., Appl. Phys. Lett. 61, 1519 (1992).Google Scholar
17. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
18. Yalisove, S. M., Tung, R. T., and Loretto, D., J. Vac. Sci. Technol. A 7,599 (1989).Google Scholar
19. Tung, R. T., Gibson, J. M. and Poate, J. M., Appl. Phys. Lett. 42, 888 (1983).Google Scholar
20. Tung, R. T., in Handbook on Semiconductors, Vol.3b: Materials, Properties and Preparation, Edited by Mahajan, S, Elsevier, 1993.Google Scholar
21. Tung, R. T. and Batstone, J. L., Appl. Phys. Lett. 52, 648 (1988).Google Scholar
22. Sumi, H., Nishihara, T., Sugano, Y., Masuya, H., and Takasu, M., IEDM 90, p. 249.Google Scholar
23. Tung, R. T., Gibson, J. M. and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
24. Hesse, D. and Mattheis, R., Phys. Stat. Sol. (a) 116, 67 (1989).Google Scholar