Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:24:28.423Z Has data issue: false hasContentIssue false

Fracture Toughness of NiAl In-Situ Eutectic Composites.

Published online by Cambridge University Press:  15 February 2011

F. E. Heredia
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106.
J. J. Valencia
Affiliation:
Metalworking Technology, Inc., Johnstown, PA 15904.
Get access

Abstract

Mechanical tests were performed on directionally solidified (DS) NiAl in-situ eutectic composites in order to evaluate the effect of ductile reinforcements on the fracture resistance of the B2 ordered intermetallic compound NiAl. Reinforcements consisted of i) Mo fibers, ii) Cr fibers, and iii) Cr(Mo) solid solution plates. Near stoichiometric NiAl ingots were prepared by induction melting as reference material to compare with the eutectic composites. Resistance curves were obtained for the NiAl/Mo fibrous eutectic alloy as well as for the NiAl/Cr(Mo) layered material. The initiation fracture toughness of the DS NiAl/Mo and NiAl/Cr(Mo) eutectic composites is larger than that of the stoichiometric NiAl, with the layered material. producing the better properties. The mechanisms for such increase in fracture toughness are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Odette, G. R., Dève, H.E., Elliott, C.K., Hasegawa, A. and Lucas, G.E., in Interfaces in Ceramic Metal Composites, eds. Arsenault, R.J., Lin, R.Y., Martins, G.P. and Fishman, S.G. (TMS-AIME, Warrendale, PA, 1990), p. 443.Google Scholar
[2] Vedula, K., Pathare, V., Aslanidis, I. and Titran, R. H., in High Temperature Ordered Intermetallic Alloys, eds. Koch, C.C., Liu, C.T. and Stoloff, N.S. (Mat. Res. Soc., 39, Pittsburgh, 1985), pp. 411.Google Scholar
[3] Dève, H.E., Evans, A.G., Odette, G.R., Mehrabian, R., Emiliani, M.L. and Hecht, R-J., Acta Metall. Mater.,38, 1491 (1990).CrossRefGoogle Scholar
[4] Subramanian, P.R., Mendiratta, M.G., Miracle, D.B. and Dimiduk, D.M., in Intermetallic Matrix Composites eds. Anton, D.L., Martin, P.L., Miracle, D.B. and McMeeking, R. (Mat. Res. Soc., 194, Pittsburgh, 1990), pp. 147.Google Scholar
[5] Dève, H.E. and Maloney, M., Acta Metall. Mater., 39, 2275 (1991).Google Scholar
[6] Lu, T.C., Evans, A.G., Hecht, R.J. and Mehrabian, R., Acta Metall. Mater., 39, 1853 (1991).Google Scholar
[7] Nekkanti, R.M. and Dimiduk, D.M., in Intermetallic Matrix Composites, eds. Anton, D.L., Martin, P.L., Miracle, D.B. and McMeeking, R. (Mat. Res. Soc., 194, Pittsburgh, 1990), pp.175.Google Scholar
[8] Ashby, M.F., Blunt, F.J. and Bannister, M., Acta Metall. Mater., 37, 1847 (1989).CrossRefGoogle Scholar
[9] Bannister, M. and Ashby, M.F., Acta Metall. Mater., 39, 2575 (1991).Google Scholar
[10] Flinn, B.D., Lo, C., Zok, F.W. and Evans, A.G., J. Am. Ceram. Soc., (1992), in press.Google Scholar
[11] Walter, J.L. and Cline, H.E., Met. Trans., 1, 1221 (1970).Google Scholar
[12] Cline, H.E. and Walter, J.L., Met. Trans., 1, 2907 (1970).Google Scholar
[13] Cline, H.E., Walter, J.L., Lifshin, E. and Russell, R-R., Met. Trans., 2, 189 (1971).Google Scholar
[14] Konitzer, D. (private communication).Google Scholar
[15] Lange, F.F., Phil. Mag., 22, 983 (1970).Google Scholar
[16] Gao, H. and Rice, J.R., J. appl. Mech., 5, 828 (1989).Google Scholar
[17] Fares, N., J. appl. Mech., 56, 837 (1989).CrossRefGoogle Scholar
[18] -Cao, H. and Evans, A.G., Acta Metall. Mater., 39, 2997 (1991).CrossRefGoogle Scholar
[19] He, M.Y., Heredia, F.E., Wissuchek, D.J. and Evans, A.G., in preparation.Google Scholar