Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:31:43.973Z Has data issue: false hasContentIssue false

Fabrication of Nanoparticles and Microspheres with Uniform Magnetic Half-Shells

Published online by Cambridge University Press:  26 February 2011

Brandon H. McNaughton
Affiliation:
[email protected], University of Michigan, Applied Physics Program and Department of Chemistry
Vladimir A. Stoica
Affiliation:
[email protected], University of Michigan, Applied Physics Program
Jeffrey N. Anker
Affiliation:
[email protected], University of Michigan, Applied Physics Program and Department of Chemistry
Katherine M. Tyner
Affiliation:
[email protected], University of Michigan, Toxicology Program
Roy Clarke
Affiliation:
[email protected], University of Michigan, Applied Physics Program
Raoul Kopelman
Affiliation:
[email protected], University of Michigan, Applied Physics Program and Department of Chemistry, United States
Get access

Abstract

We report a method for fabricating, anisotropically designed, multiphasic nano-particles with uniform magnetic half-shells. Cobalt layers were deposited onto commercially made non-magnetic polystyrene nanospheres and microspheres, using ultrahigh vacuum vapor deposition, which produced particles with a half-shell of uniform size, shape and magnetic content. Iron was also deposited onto commercially made silica nanospheres and microspheres and was characterized using transmission electron microscopy and scanning electron microscopy. The coercivity of the magnetic material layers, on the substrate-supported spheres, was enhanced compared to the bulk values of such films without spheres. The particles, once removed from the substrate, were amenable to being rotated in solution, which could allow for more accurate physical and chemical measurements in a variety of fluidic environments. Applications for imaging local mechanical, magnetic and electrical environments are also delineated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lukaszew, R. A., McNaughton, B.H., Stoica, V., Clarke, R.. Mat. Res. Soc. Symp. Proc 696, N3.29 (2002).Google Scholar
[2] Monson, E., Brasuel, M., Philbert, M.A., et al. In Biomedical Photonics Handbook; Vo-Dinh, T., Ed.; CRC Press: Boca Raton, FL, 2003.Google Scholar
[3] Liu, S. Q., Wang, Q., Van Der Voort, P., et al. J. Magn. Magn. Mater. 280, 31 (2004).Google Scholar
[4] Park, J., An, K., Hwang, Y., et al. Nature Materials 3, 891 (2004).Google Scholar
[5] Wang, C. J., and Shah, D.. Process To Make Magnetically Responsive Fluorescent Polymer Particles U.S., 1995.Google Scholar
[6] Tartaj, P., Morales, M. d. P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C. J.. J. Phys. D. Appl. Phys. 36, R182 (2003).Google Scholar
[7] Häfeli, U. O., Ciocan, R., and Dailey, J.P.. European Cells and Materials 3, 34 (2002).Google Scholar
[8] Long, D.P., Patterson, C.H., Moore, M.H., Seferos, D.S., Bazan, G.C., and Kushmerick, J.G.. Appl. Phys. Lett. 86, 153105 (2005).Google Scholar
[9] Love, J.C., Gates, B.D., Wolfe, D.B., Paul, K.E., and Whitesides, G.M.. Nano Lett. 2, 891 (2002).Google Scholar
[10] Hulteen, J. C., Van Duyne, R.P.. J. Vac. Sci. Technol. A 13, 1553 (1995).Google Scholar
[11] Choi, D.-G., Kim, S., Jang, S.-G., Yang, S.-M., Jeong, J.-R., and Shin, S.-C.. Chem. Mater. 16, 4208 (2004).Google Scholar
[12] Anker, J. N., and Kopelman, R.. Appl. Phys. Lett. 82, 1102 (2003).Google Scholar
[13] Paunov, V. N., and Cayre, O.J.. Adv. Mater. 16, 788 (2004).Google Scholar
[14] Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X., and Lee, L. P.. Nano Lett. 5, 119 (2005).Google Scholar
[15] Takei, H., and Shimizu, N.. Langmuir 13, 1865 (1997).Google Scholar
[16] Anker, J. N., Horvath, T, and Kopelman, R.. European Cells and Materials 3, 34 (2002).Google Scholar
[17] Anker, J. N., Behrend, C., and Kopelman, R.. J. Appl. Phys. 93, 6698 (2003).Google Scholar
[18] Anker, J.N., Behrend, C.J., McNaughton, B.H., Roberts, T. G., Brasuel, M., Philbert, M. A. and Kopelman, R.. Mat. Res. Soc. Symp. Proc. 790, 4.4.1 (2004).Google Scholar
[19] Behrend, C. J., Anker, J.N., McNaughton, B.H., Brasuel, M., Philbert, M.A., and Kopelman, R.. J. Phys. Chem. B 108, 10408 (2004).Google Scholar
[20] Behrend, C. J. Anker, J.N., McNaughton, B.H., and Kopelman., R. J. Magn. Magn. Mater. 293, 663 (2005).Google Scholar
[21] Roberts, T. G., Anker, J. N., Kopelman, R.. J. Magn. Magn. Mater. 293, 715 (2005).Google Scholar
[22] Anker, J. N., Behrend, C.J., and Kopelman, R.. J. Magn. Magn. Mater. 293, 655 (2005).Google Scholar
[23] Choi, J., Zhao, Y., Zhang, K., Chien, S., and Lo, Y.-H.. Nano Lett. 3, 995 (2003).Google Scholar
[24] Albrecht, M., Hu, G., Guhr, I. L., Ulbrich, T. C., Boneberg, J., Leiderer, P., and Schatz, G.. Nat. Mater. 4, 203 (2005).Google Scholar
[25] Strogatz, S.H. Nonlinear dynamics and chaos; Westview Press: Cambridge, MA, 2000.Google Scholar
[26] McNaughton, B. H., Kehbein, K., Anker, J. N., Kopelman, R.. Submitted to J. Phys. Chem. B (2006).Google Scholar