Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:44:57.991Z Has data issue: false hasContentIssue false

Dry Surface Cleaning of Plasma-Etched Hemts

Published online by Cambridge University Press:  22 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
E. Lane
Affiliation:
AT&T Bell Laboratories, Breinigsville, PA
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
C. S. Wu
Affiliation:
Hughes Aircraft Co., Torrance, CA
D. A. Bohling
Affiliation:
Air Products and Chemicals Inc., Allentown, PA
J. C. Ivankovits
Affiliation:
Air Products and Chemicals Inc., Allentown, PA
Get access

Abstract

Fabrication of sub-micron high electron mobility transistors (HEMTs) involves dry etch removal of GaAs from an underlying AlGaAs or InGaAs stop layer. The etch selectivity is achieved by formation of AlF3 on AlGaAs, or InCl3 and InF3 on InGaAs, which must be removed before processing can proceed. Wet chemical cleaning has difficulty in such a situation because of surface tension effects. We have investigated use of Electron Cyclotron Resonance (ECR) H2 or Ar discharges, or hexafluoroacetylacetone (HFAC) vapor, for in-situ dry etch cleaning of HEMTs exposed to low bias BCl3/SF6 discharges. The HFAC vapor can remove most of the remnant fluorine, but is effective only when the sample is heated above ∼250°C. This relatively high temperature is not compatible with in-situ cleaning of the etched device. Low-bias(−75V) sputter cleaning with an Ar discharge removes all remnant Cl and ∼40% of the F, but dc biases above -125V are required for complete cleaning, and this ion bombardment can lead to damage in the HEMT. ECR H2 discharge exposure is effective in removing all Cl- and F-related residues in a short period (∼5 mins) with low dc biases (−25 V) on the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ren, F., Pearton, S. J., Kopf, R. F., Chu, S. N. G. and Pei, S. S., Electronics Lett. 27 1175 (1991).Google Scholar
2. Abe, M., Mimura, T., Nishibatomi, K. and Kobayashi, M., Symp. Solid State Dev. and Mat., Kobe 1984, p. 359.Google Scholar
3. Lin, B. T., Kofol, S., Kocot, C., Luetchinget, H., Miller, J. N., Mars, D. E., White, B. and Littau, E., Proc. GaAs IC Symp. 1986, p. 51.Google Scholar
4. Seaward, K. L., Moll, N. J., Coulman, D. J. and Stickle, W. F., J. Appl. Phys. 61 2358 (1987).Google Scholar
5. Resnick, D. J., Ren, F., Tennant, D. M. and Kopf, R. F., SPIE Proc. 1089 103 (1989).Google Scholar
6. Ali, F. and Gupta, A., eds., HEMTs and HBTs: Devices, Fabrication and Circuits (Artech House, Boston 1991).Google Scholar
7. Pei, S. S. and Shah, N. J., Introduction to Semiconductor Technology, ed. Wang, C. T. (Wiley, NY 1990), Chapter 3.Google Scholar
8. Pearton, S. J. and Shah, N. J., High Speed Semiconductor Devices, ed. Sze, S. M. (Wiley Interscience, NY 1990), Chapter 5.Google Scholar
9. Pearton, S. J., Ren, F., Lothian, J. R., Fullowan, T. R., Kopf, R. F., Chakrabarti, U. K., Hui, S. P., Emerson, A. B., Kostelak, R. L. and Pei, S. S., J. Vac. Sci. Technoi. B 9 2487 (1991).Google Scholar
10. Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37 1022 (1980).Google Scholar
11. Salimian, S., Cooper, C. B. III and Day, M. E., J. Vac. Sci. Technol. B 5 1606 (1987).Google Scholar
12. Pearton, S. J., Hobson, W. S., Chakrabarti, U. K., Derkits, G. E. and Kinsella, A. D., J. Electrochem. Soc. 137 3892 (1990).Google Scholar
13. Seabaugh, A., J. Vac. Sci. Technoi. B 6 77 (1988).Google Scholar
14. Seaward, K. L., Moll, N. J. and Stickle, W. F., J. Vac. Sci. Technoi. B 6 1645 (1988).Google Scholar
15. Pearton, S. J., Hobson, W. S., Chakrabarti, U. K., Emerson, A. B., Lane, E. and Jones, K. S., J. Appl. Phys. 66 2137 (1989).Google Scholar
16. Ren, F., Pearton, S. J., Abemathy, C. R., Kopf, R., Wu, C. S. and Wen, C. D., IEEE Electron. Dev. (in press).Google Scholar
17. Anthony, B., Hsu, T., Breaux, L., Qian, R., Bauerjee, S. and Tasch, A., J. Electron. Mat. 19 1027 (1990).Google Scholar
18. Kern, W., J. Electrochem. Soc. 137 1887 (1990).Google Scholar
19. Yew, T. R. and Reif, R., J. Appl. Phys. 68 4681 (1990).Google Scholar
20. Rubloff, G. W. and Bordamaro, D. T., IBM J. Res. Develop. 36 233 (1992).Google Scholar
21. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S. and Kinsella, A. D., J. Vac. Sci. Technol. B 8 596 (1990).Google Scholar
22. Pearton, S. J., Chakrabarti, U. K., Kinsella, A. D., Johnson, D. and Constantine, C., Appl. Phys. Lett. 56 1424(1990).Google Scholar
23. Kondo, N., Nanishi, Y. and Fujmoto, M., Jap. J. Appl. Phys. 31 2913 (1992).Google Scholar
24. Abermathy, C. R., Wisk, R., Pearton, S. J. and Ren, F., J. Vac. Sci. Technol. B 10 2153 (1992).Google Scholar
25. Tanaka, Y., Kunitsugu, Y., Suemune, I., Honda, Y., Ken, Y. and Kamanishi, M., J. Appl. Phys. 64 2778 (1988).Google Scholar
26. Lu, Z., Schmidt, M. T. and Osgood, R. M., J. Vac. Sci. Technoi. A 9 1040 (1991).Google Scholar
27. Choquette, K. D., Hong, M., Freund, R. S., Mannaerts, J. D. and Wetzel, R. C., J. Vac. Sci. Technol. B 9 3502 (1991).Google Scholar
28. Lu, Z., Schmidt, M. T., Chen, D., Osgood, R. M., Holber, W. M., Dodlesnik, D. V. and Foster, J., Appl. Phys. Lett. 58 1143 (1991).Google Scholar
29. Pearton, S. J., Corbett, J. W. and Stavola, M., Hydrogen in Crystalline Semiconductor (Springer-Verlag, Heidelberg 1992).Google Scholar
30. Ivankovits, J. C., Bohling, D. A., Lane, A. and Roberts, D. A. Proc. 2nd Int. Symp. Cleaning Technology for Semiconductors (Electrochemical Society, Pennington, NJ 1992) p. 127.Google Scholar